Transient Receptor Potential Vanilloid 6 (TRPV6) is a Ca2+ selective ion channel playing important roles in intestinal Ca2+ absorption, male fertility and cancer development. Its expression level in the intestines is regulated by the active form of vitamin D. TRPV6 is member of the highly diverse TRP ion channel family. The only known common functional feature among TRP channels is their dependence on, and modulation by phosphoinositides, mostly phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2]. Most TRP channels require factors other than PI(4,5)P2 to open, which are often in complex interaction with PI(4,5)P2 regulation. This complexity hinders understanding of the molecular mechanism of how PI(4,5)P2 opens these channels. TRPV6 is constitutively active, thus devoid of these complexities, and therefore is an ideal model to gain molecular insight in its regulation by PI(4,5)P2. In the current proposal, we will study PI(4,5)P2 regulation of TRPV6 channels using a combination of computational and experimental approaches. We have built a homology model of TRPV6 based on the recent nearly full-length, side-chain resolution structure of the related TRPV1 channels. We have computationally docked PI(4,5)P2 to both TRPV6 and TRPV1.
In aims 1 and 2 we will use a combination of electrophysiological techniques and further computational simulations to test predictions of our model, and to gain insight into how PI(4,5)P2 open these channels. TRPV6 channels are constitutively active, but undergo Ca2+ induced inactivation, similar to many other Ca2+ channels, presumably to avoid toxic Ca2+ overload. In the previous funding period we developed a mutant of TRPV6 that is resistant to inhibition by PI(4,5)P2 depletion, due to its high affinity for this lipid. We also identified a mutant that does not bind calmodulin (CaM), thus it is resistant to inhibition by this Ca2+ binding protein.
In aim 3, we will use these two mutants, as well as fluorescence-based monitoring of CaM association with the channel, and depletion of PI(4,5)P2 in measurements performed simultaneously with patch clamp recording of channel activity. These experiments will dissect the roles of CaM and PI(4,5)P2 depletion in Ca2+-induced inactivation of channel activity.

Public Health Relevance

TRPV6 is a major player in absorption of Ca2+ in the intestines, but there are essentially no pharmacological tools available to modulate this process. Increased absorption of Ca2+ is the most important risk factor for kidney stones and decreased Ca2+ absorption plays an important role in the pathomechanism of osteoporosis. The better understanding of how TRPV6 is regulated, could potentially lead to novel ways to pharmacologically enhance or reduce intestinal Ca2+ absorption.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Project (R01)
Project #
Application #
Study Section
Molecular and Integrative Signal Transduction Study Section (MIST)
Program Officer
Nie, Zhongzhen
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Rutgers University
Schools of Medicine
United States
Zip Code
Kasimova, Marina A; Yazici, Aysenur; Yudin, Yevgen et al. (2018) Ion Channel Sensing: Are Fluctuations the Crux of the Matter? J Phys Chem Lett 9:1260-1264
Hughes, Taylor E T; Lodowski, David T; Huynh, Kevin W et al. (2018) Structural basis of TRPV5 channel inhibition by econazole revealed by cryo-EM. Nat Struct Mol Biol 25:53-60
Hughes, Taylor E T; Pumroy, Ruth A; Yazici, Aysenur Torun et al. (2018) Structural insights on TRPV5 gating by endogenous modulators. Nat Commun 9:4198
Carnevale, Vincenzo (2018) Protonation underlies tonic vs. use-dependent block. Proc Natl Acad Sci U S A 115:3512-3514
Kasimova, Marina A; Yazici, Aysenur Torun; Yudin, Yevgen et al. (2018) A hypothetical molecular mechanism for TRPV1 activation that invokes rotation of an S6 asparagine. J Gen Physiol 150:1554-1566
Yudin, Yevgen; Rohacs, Tibor (2018) Inhibitory Gi/O-coupled receptors in somatosensory neurons: Potential therapeutic targets for novel analgesics. Mol Pain 14:1744806918763646
Howard, Rebecca J; Carnevale, Vincenzo; Delemotte, Lucie et al. (2018) Permeating disciplines: Overcoming barriers between molecular simulations and classical structure-function approaches in biological ion transport. Biochim Biophys Acta Biomembr 1860:927-942
Steinberg, Ximena; Kasimova, Marina A; Cabezas-Bratesco, Deny et al. (2017) Conformational dynamics in TRPV1 channels reported by an encoded coumarin amino acid. Elife 6:
Beckerman, Pazit; Bi-Karchin, Jing; Park, Ae Seo Deok et al. (2017) Transgenic expression of human APOL1 risk variants in podocytes induces kidney disease in mice. Nat Med 23:429-438
Granata, Daniele; Ponzoni, Luca; Micheletti, Cristian et al. (2017) Patterns of coevolving amino acids unveil structural and dynamical domains. Proc Natl Acad Sci U S A 114:E10612-E10621

Showing the most recent 10 out of 33 publications