Galactofuranose (Galf) is an important building block of the cell wall of pathogenic fungi and a major component of the cell surface glycoconjugated structures (sugar coat) of protozoan parasites. Because of the importance of Galf-containing molecules for host-specific cell recognition, growth, and pathogenesis, and the absence of this unusual sugar in humans, Galf biosynthetic enzymes are attractive targets for the development of new antimicrobial agents. The flavoenzyme UDP-galactopyranose mutase (UGM) plays a central role in Galf biosynthesis by catalyzing the conversion of UDP-galactopyranose to UDP-Galf. Deletion of the UGM gene results in severely attenuated virulence of the fungal pathogen Aspergillus fumigatus and the protozoan parasite Leishmania major, suggesting UGM as a promising drug design target. In addition, UGM is fundamentally interesting because the enzyme neither oxidizes nor reduces the substrate, which is unusual among flavoenzymes. Studies of bacterial UGMs have shown that the reduced flavin is necessary for catalysis, but the role that the flavin plays during the catalytic cycle remains controversial. Here, we propose the first studies of the catalytic mechanism and three-dimensional structure of eukaryotic UGMs, using the enzymes from A. fumigatus and Trypanosoma cruzi as prototypes from fungal and protozoan parasites, respectively. Key preliminary results include the production of active recombinant enzyme and the growth of preliminary crystals.
Two aims are proposed: 1. Determine the role of the flavin cofactor in the chemical mechanism of eukaryotic UGMs. Experiments proposed include rapid reaction kinetic spectroscopic analyses, characterization of the redox potential and pH profiles, testing potential alternative substrates and inhibitors, and identifying redox partners. 2. Determine the three-dimensional structures of eukaryotic UGMs. Structures of UGMs in the oxidized, reduced, and ligand-bound conformations will be solved using X-ray crystallography and small-angle X-ray scattering. Successful completion of these aims will provide a platform for the future design of structure- and mechanism- based inhibitors of UGMs, which could serve as lead compounds for the development of chemotherapeutics for the treatment of fungal infections and neglected diseases such as Chagas disease. )

Public Health Relevance

UDP-galactopyranose mutase (UGM) catalyzes a key step in the biosynthesis of galactofuranose (Galf), an essential sugar molecule found in pathogenic fungi and disease-causing protozoan parasites. The proposed research will create new knowledge about the catalytic mechanism and three-dimensional structure of UGM from the fungus Aspergillus fumigatus and the causative agent of Chagas disease, the parasite Trypanosoma cruzi. This information will aid the development of antimicrobial agents targeting these important human pathogens.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM094469-03
Application #
8327867
Study Section
Macromolecular Structure and Function E Study Section (MSFE)
Program Officer
Marino, Pamela
Project Start
2010-09-15
Project End
2015-08-31
Budget Start
2012-09-01
Budget End
2013-08-31
Support Year
3
Fiscal Year
2012
Total Cost
$287,612
Indirect Cost
$70,169
Name
Virginia Polytechnic Institute and State University
Department
Biochemistry
Type
Schools of Earth Sciences/Natur
DUNS #
003137015
City
Blacksburg
State
VA
Country
United States
Zip Code
24061
Pierdominici-Sottile, Gustavo; Cossio-Pérez, Rodrigo; Da Fonseca, Isabel et al. (2018) Steric Control of the Rate-Limiting Step of UDP-Galactopyranose Mutase. Biochemistry 57:3713-3721
Martín Del Campo, Julia S; Eckshtain-Levi, Meital; Sobrado, Pablo (2017) Identification of eukaryotic UDP-galactopyranose mutase inhibitors using the ThermoFAD assay. Biochem Biophys Res Commun 493:58-63
Martin Del Campo, Julia S; Eckshtain-Levi, Meital; Vogelaar, Nancy J et al. (2017) Identification of Aspergillus fumigatus UDP-Galactopyranose Mutase Inhibitors. Sci Rep 7:10836
Sobrado, Pablo; Tanner, John J (2017) Multiple functionalities of reduced flavin in the non-redox reaction catalyzed by UDP-galactopyranose mutase. Arch Biochem Biophys 632:59-65
Martín Del Campo, Julia S; Vogelaar, Nancy; Tolani, Karishma et al. (2016) Inhibition of the Flavin-Dependent Monooxygenase Siderophore A (SidA) Blocks Siderophore Biosynthesis and Aspergillus fumigatus Growth. ACS Chem Biol 11:3035-3042
Mehra-Chaudhary, Ritcha; Dai, Yumin; Sobrado, Pablo et al. (2016) In Crystallo Capture of a Covalent Intermediate in the UDP-Galactopyranose Mutase Reaction. Biochemistry 55:833-6
Da Fonseca, Isabel; Qureshi, Insaf A; Mehra-Chaudhary, Ritcha et al. (2014) Contributions of unique active site residues of eukaryotic UDP-galactopyranose mutases to substrate recognition and active site dynamics. Biochemistry 53:7794-804
Tanner, John J; Boechi, Leonardo; Andrew McCammon, J et al. (2014) Structure, mechanism, and dynamics of UDP-galactopyranose mutase. Arch Biochem Biophys 544:128-41
Komachi, Yuji; Hatakeyama, Shintaro; Motomatsu, Haruka et al. (2013) GfsA encodes a novel galactofuranosyltransferase involved in biosynthesis of galactofuranose antigen of O-glycan in Aspergillus nidulans and Aspergillus fumigatus. Mol Microbiol 90:1054-1073
Kizjakina, Karina; Tanner, John J; Sobrado, Pablo (2013) Targeting UDP-galactopyranose mutases from eukaryotic human pathogens. Curr Pharm Des 19:2561-73

Showing the most recent 10 out of 21 publications