The endoplasmic reticulum (ER) is a folding factory for the cell, able to churn out thousands of secretory proteins per second. Misfolding of a number of these proteins results in diseases ranging from cystic fibrosis to liver cirrhosis. While full-length proteins can be studied in vitro using a myriad of biophysical techniques, thus allowing biophysicists to characterize in detail their folding energy landscapes, studying protein folding in the more physiologically relevant ER environment presents daunting technical obstacles. Using recently developed, powerful single molecule fluorescence techniques on nascent polypeptide chains that contain fluorescently-labeled amino acids, we will determine the conformational evolution as a nascent polypeptide chain elongates in the ER and how conformational space is modulated by interactions with the chaperones and modifying enzymes resident in the ER. The goal is to obtain detailed information on the folding landscape of the growing nascent chain, rivaling the data available in test-tube experiments. Co- and post-translational interactions between the ER-resident proteins and nascent chains likely smooth the folding energy landscape, biasing against misfolded and aggregation-prone intermediates. This remodeling of the folding landscape is particularly important for proteins with high contact order, i.e. many contacts between distal parts of the chain. We will focus on an important family of secreted proteins, the inhibitory serpins, which fold into native structures with high contact order. Intriguingly serpin native states are energetically metastable, poised to change to a different structure. Serpins play crucial biological roles by regulating proteases involved in key physiological processes including blood coagulation and inflammation. A number of serpin mutations, associated with diseases such as liver cirrhosis and emphysema (together called 'serpinopathies'), lead to serpin aggregation in the ER. By studying serpin folding in the ER and comparing it to in vitro folding, we will determine how the folding landscape is altered by interactions with ER-resident proteins and by disease-associated mutations. The results of this research will provide unprecedented insight into how serpins misfold and how their energy landscapes differ in vitro and in vivo. This work will also provide a readily accessible experimental toolbox for scientists studying protein folding in the ER as well as a platform for potential therapeutic strategies to treat serpinopathies and other ER folding diseases.
Secretory proteins, many of which are associated with diseases, begin life in the endoplasmic reticulum (ER). By deploying powerful biophysical and cell biological approaches, we will explore the folding energy landscape in the ER of a biomedically significant secreted protein from the serpin family and determine how it is altered by disease-causing mutations.
Wang, Fang; Orioli, Simone; Ianeselli, Alan et al. (2018) All-Atom Simulations Reveal How Single-Point Mutations Promote Serpin Misfolding. Biophys J 114:2083-2094 |
Krishnan, Beena; Hedstrom, Lizbeth; Hebert, Daniel N et al. (2017) Expression and Purification of Active Recombinant Human Alpha-1 Antitrypsin (AAT) from Escherichia coli. Methods Mol Biol 1639:195-209 |
Chandrasekhar, Kshama; Ke, Haiping; Wang, Ning et al. (2016) Cellular folding pathway of a metastable serpin. Proc Natl Acad Sci U S A 113:6484-9 |
Hebert, Daniel N; Clerico, Eugenia M; Gierasch, Lila M (2016) Division of Labor: ER-Resident BiP Co-Chaperones Match Substrates to Fates Based on Specific Binding Sequences. Mol Cell 63:721-3 |
Tannous, Abla; Pisoni, Giorgia Brambilla; Hebert, Daniel N et al. (2015) N-linked sugar-regulated protein folding and quality control in the ER. Semin Cell Dev Biol 41:79-89 |
Hebert, Daniel N; Lamriben, Lydia; Powers, Evan T et al. (2014) The intrinsic and extrinsic effects of N-linked glycans on glycoproteostasis. Nat Chem Biol 10:902-10 |
Theillet, Francois-Xavier; Binolfi, Andres; Frembgen-Kesner, Tamara et al. (2014) Physicochemical properties of cells and their effects on intrinsically disordered proteins (IDPs). Chem Rev 114:6661-714 |
Gershenson, Anne (2014) Deciphering protein stability in cells. J Mol Biol 426:4-6 |
Cazzolli, Giorgia; Wang, Fang; a Beccara, Silvio et al. (2014) Serpin latency transition at atomic resolution. Proc Natl Acad Sci U S A 111:15414-9 |
Gershenson, Anne; Gierasch, Lila M; Pastore, Annalisa et al. (2014) Energy landscapes of functional proteins are inherently risky. Nat Chem Biol 10:884-91 |
Showing the most recent 10 out of 15 publications