Metal ions are essential to life as they augment amino acid protein chemistry and thereby catalyze many difficult biological reactions. As ?free? metal ions are toxic and indiscriminately reactive, critical protein systems have evolved to sequester, chaperone, and regulate metal ion concentrations. Defects in these systems lead to metal ion metabolic disease and result in cellular, tissue, and systemic pathology. The iron-sulfur cluster assembly pathway contains a conserved set of proteins that synthesizes Fe-S clusters, which are then distributed by a network of cluster transfer and conversion factors to hundreds of Fe-S dependent proteins. Here we focus on the structure of the eukaryotic Fe-S assembly complex and the mechanism of cluster biosynthesis. We show that a stable low activity Fe-S assembly complex can be activated by binding of the Friedreich's ataxia protein (frataxin; FXN), and that the mitochondrial acyl carrier protein (ACP) has a moonlighting function as a component critical for the stability and function of the assembly complex. Further, our crystal structure of the core (NFS1-ISD11-ACP; called SDA) of the eukaryotic Fe-S assembly complex revealed a dramatically different architecture compared to the prokaryotic system that is stabilized by a novel ACP-lipid interaction with the hydrophobic core of ISD11. Here, we will build upon these paradigm shifting results to determine structural and dynamic information for binding accessory proteins to the SDA core of the Fe-S assembly complex, elucidate how ACP-lipid interactions modulate functional properties for the assembly complex, and provide mechanistic insight into FXN based activation and Fe-S cluster formation. This fundamental research will establish a framework for emerging genetic results and discoveries and provide a basis for understanding defects in iron-sulfur cluster metabolism relevant to human health and disease.

Public Health Relevance

The fundamental research in this proposal will have important public health implications for understanding iron metabolism and mitochondrial dysfunction. Defects in the biogenesis of iron-sulfur clusters are directly associated with cardiovascular and neurodegenerative disease, and contribute to genomic instability, the development of cancer, and aging.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM096100-07
Application #
9627980
Study Section
Macromolecular Structure and Function A Study Section (MSFA)
Program Officer
Anderson, Vernon
Project Start
2011-09-01
Project End
2021-01-31
Budget Start
2019-02-01
Budget End
2020-01-31
Support Year
7
Fiscal Year
2019
Total Cost
Indirect Cost
Name
Texas A&M University
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
020271826
City
College Station
State
TX
Country
United States
Zip Code
77845
Cory, Seth A; Van Vranken, Jonathan G; Brignole, Edward J et al. (2017) Structure of human Fe-S assembly subcomplex reveals unexpected cysteine desulfurase architecture and acyl-ACP-ISD11 interactions. Proc Natl Acad Sci U S A 114:E5325-E5334
Vranish, James N; Russell, William K; Yu, Lusa E et al. (2015) Fluorescent probes for tracking the transfer of iron-sulfur cluster and other metal cofactors in biosynthetic reaction pathways. J Am Chem Soc 137:390-8
Fox, Nicholas G; Chakrabarti, Mrinmoy; McCormick, Sean P et al. (2015) The Human Iron-Sulfur Assembly Complex Catalyzes the Synthesis of [2Fe-2S] Clusters on ISCU2 That Can Be Transferred to Acceptor Molecules. Biochemistry 54:3871-9
Fox, Nicholas G; Das, Deepika; Chakrabarti, Mrinmoy et al. (2015) Frataxin Accelerates [2Fe-2S] Cluster Formation on the Human Fe-S Assembly Complex. Biochemistry 54:3880-9
Bridwell-Rabb, Jennifer; Fox, Nicholas G; Tsai, Chi-Lin et al. (2014) Human frataxin activates Fe-S cluster biosynthesis by facilitating sulfur transfer chemistry. Biochemistry 53:4904-13
Bridwell-Rabb, Jennifer; Iannuzzi, Clara; Pastore, Annalisa et al. (2012) Effector role reversal during evolution: the case of frataxin in Fe-S cluster biosynthesis. Biochemistry 51:2506-14
Tsai, Chi-Lin; Bridwell-Rabb, Jennifer; Barondeau, David P (2011) Friedreich's ataxia variants I154F and W155R diminish frataxin-based activation of the iron-sulfur cluster assembly complex. Biochemistry 50:6478-87
Bridwell-Rabb, Jennifer; Winn, Andrew M; Barondeau, David P (2011) Structure-function analysis of Friedreich's ataxia mutants reveals determinants of frataxin binding and activation of the Fe-S assembly complex. Biochemistry 50:7265-74