How T cell receptor (TCR) discriminates different peptides presented by the major histocompatibility complex molecule (pMHC) is a central question in adaptive immunity that defends humans against disease-causing pathogens. Yet its mechanism is poorly understood due at least partly to the lack of appropriate tools to analyze the initial recognition events at scales as small as single molecular interactions and as brief as subseconds, which are beyond the temporal and spatial resolutions of standard techniques. Adhesion frequency and thermal fluctuation assays - two techniques probing the first seconds of TCR/pMHC interactions - as well as two other single-bond methods (unbinding force and bond lifetime assays) will be used in the proposed research to study the dynamics of TCR/pMHC, CD8/MHC interactions and their crosstalk. Because of the inherent stochastic nature of single molecular interactions, statistical modeling approach is required for data analysis. Specifically, the data of three of the above assays are in the form of time series of binary adhesion scores or continuous values of unbinding forces or bond lifetimes with fixed intervals. The data of the thermal fluctuation assay are in the form of alternating bond lifetime and waiting time of random intervals. While some information can be obtained by using descriptive statistics, more sophisticated statistical modeling will enable us to greatly increase the understanding and utilities of the data. New class of time series models will be used to quantify the correlations of the adhesion scores, unbinding forces and bond lifetimes, which are manifested as memory effects, i.e., T cell's ability to """"""""remember"""""""" the previous adhesion event and to alter the probability of occurrence and the probability densities of unbinding forces and lifetimes of the next adhesion event. Mixture distribution will be used to determine whether the measured single-bonds events consist of a homogeneous population of single states or a heterogeneous population of multi-state mixture. Change-point formulation will be employ for statistical estimation in the thermal fluctuation assay. These statistical models will be tested experimentally and modified as needed to extract the fundamental characteristics of TCR interaction with different peptides.

Public Health Relevance

The sustained interest in the kinetic analysis of TCR/pMHC interactions stems from a fundamental hypothesis that the interaction parameters have a central role in determining the subsequent T cell response. Combination of sensitive single-molecule experiments with statistical modeling will allow us to extract new information required for understanding of T cell recognition of different peptides potentially leading to new therapies based on altered peptide ligands.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM096187-02
Application #
8132564
Study Section
Special Emphasis Panel (ZGM1-CBCB-5 (BM))
Program Officer
Dunsmore, Sarah
Project Start
2010-09-01
Project End
2013-08-31
Budget Start
2011-09-01
Budget End
2012-08-31
Support Year
2
Fiscal Year
2011
Total Cost
$292,449
Indirect Cost
Name
Georgia Institute of Technology
Department
Engineering (All Types)
Type
Schools of Engineering
DUNS #
097394084
City
Atlanta
State
GA
Country
United States
Zip Code
30332
Cole, David K; Bulek, Anna M; Dolton, Garry et al. (2016) Hotspot autoimmune T cell receptor binding underlies pathogen and insulin peptide cross-reactivity. J Clin Invest 126:2191-204
Liu, Baoyu; Chen, Wei; Zhu, Cheng (2015) Molecular force spectroscopy on cells. Annu Rev Phys Chem 66:427-51
Chen, Yunfeng; Liu, Baoyu; Ju, Lining et al. (2015) Fluorescence Biomembrane Force Probe: Concurrent Quantitation of Receptor-ligand Kinetics and Binding-induced Intracellular Signaling on a Single Cell. J Vis Exp :e52975
Hong, Jinsung; Persaud, Stephen P; Horvath, Stephen et al. (2015) Force-Regulated In Situ TCR-Peptide-Bound MHC Class II Kinetics Determine Functions of CD4+ T Cells. J Immunol 195:3557-64
Liu, Baoyu; Chen, Wei; Natarajan, Kannan et al. (2015) The cellular environment regulates in situ kinetics of T-cell receptor interaction with peptide major histocompatibility complex. Eur J Immunol 45:2099-110
Casas, Javier; Brzostek, Joanna; Zarnitsyna, Veronika I et al. (2014) Ligand-engaged TCR is triggered by Lck not associated with CD8 coreceptor. Nat Commun 5:5624
Liu, Baoyu; Chen, Wei; Evavold, Brian D et al. (2014) Accumulation of dynamic catch bonds between TCR and agonist peptide-MHC triggers T cell signaling. Cell 157:357-368
Liu, Baoyu; Zhong, Shi; Malecek, Karolina et al. (2014) 2D TCR-pMHC-CD8 kinetics determines T-cell responses in a self-antigen-specific TCR system. Eur J Immunol 44:239-50
Zhu, Cheng (2014) Mechanochemitry: a molecular biomechanics view of mechanosensing. Ann Biomed Eng 42:388-404
Pryshchep, Sergey; Zarnitsyna, Veronika I; Hong, Jinsung et al. (2014) Accumulation of serial forces on TCR and CD8 frequently applied by agonist antigenic peptides embedded in MHC molecules triggers calcium in T cells. J Immunol 193:68-76

Showing the most recent 10 out of 16 publications