Alternative pre-mRNA splicing in Drosophila. D. Rio - PI Alternative pre-mRNA splicing is an important mechanism for regulating gene expression in metazoans. Indeed, RNA processing is a conduit through which genomic information is transferred to proteomic information. Because most eukaryotic genes are split and have the potential for alternative splicing, a dramatic increase in proteomic diversity among cells, tissues and organisms is a direct consequence of alternative splicing. In fact, it is now recognized that 30-40% of the known human and mouse disease gene mutations affect the splicing process. Thus, understanding how introns are recognized and how patterns of alternative splicing are set up may allow therapeutic intervention. Splicing silencers are a major type of RNA control element generating tissue- or cell type-specific splicing patterns in metazoans. Our previous work has focused on characterization of the tissue-specific Drosophila P element splicing silencer element. Recent work from our group has focused on tissue-specific regulation of alternative splicing and how the action of hnRNP proteins, PSI and the hnRNP A/B family proteins, hrp48, 40, 38 and 36 results in splicing silencer function. We wish to extend these studies to investigate the function of a Drosophila paralog of U2AF, called LS2, that functions as a splicing repressor. Building on previous R21 funding, we will continue investigations of the microRNA pathway protein, Ago-2, in alternative splicing pathways. Finally, using a variety of approaches, we want to identify and functionally characterize new cellular splicing silencers that are controlled by multiple splicing factors. One advantage this proposal has is the small genome size and well-annotated Drosophila genome that allows a comprehensive analysis of both alternative splicing patterns and the genome-wide distribution of RNA binding proteins. Because most eukaryotic genes are split and have the potential for alternative splicing, increased proteomic diversity among cells, tissues and organisms is a direct consequence of alternative splicing. Because the protein factors involved in controlling patterns of alternative splicing have homologs in humans and like humans Drosophila has extensive alternative splicing, results obtained in this system will have direct relevance and application to human health.

Public Health Relevance

Alternative pre-mRNA splicing in Drosophila D Rio - PI Alternative pre-mRNA splicing is a common mechanism for regulating gene expression in metazoans. Because most eukaryotic genes are split and have the potential for alternative splicing, a dramatic increase in proteomic diversity among cells, tissues and organisms is a direct consequence of alternative splicing. In fact, it is now recognized that 30-40% of the known human and mouse disease gene mutations affect the splicing process and because the protein factors involved in controlling patterns of alternative splicing have homologs in humans and like humans Drosophila has extensive alternative splicing, results obtained in this system will have direct relevance and application to human health.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM097352-03
Application #
8605198
Study Section
Molecular Genetics A Study Section (MGA)
Program Officer
Bender, Michael T
Project Start
2012-05-01
Project End
2016-01-31
Budget Start
2014-02-01
Budget End
2015-01-31
Support Year
3
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of California Berkeley
Department
Biochemistry
Type
Schools of Arts and Sciences
DUNS #
City
Berkeley
State
CA
Country
United States
Zip Code
94704
Lee, Yeon J; Wang, Qingqing; Rio, Donald C (2018) Coordinate regulation of alternative pre-mRNA splicing events by the human RNA chaperone proteins hnRNPA1 and DDX5. Genes Dev 32:1060-1074
Wang, Qingqing; Abruzzi, Katharine C; Rosbash, Michael et al. (2018) Striking circadian neuron diversity and cycling of Drosophila alternative splicing. Elife 7:
Wang, Qingqing; Rio, Donald C (2018) JUM is a computational method for comprehensive annotation-free analysis of alternative pre-mRNA splicing patterns. Proc Natl Acad Sci U S A 115:E8181-E8190
Teixeira, Felipe Karam; Okuniewska, Martyna; Malone, Colin D et al. (2017) piRNA-mediated regulation of transposon alternative splicing in the soma and germ line. Nature 552:268-272
Wang, Qingqing; Taliaferro, J Matthew; Klibaite, Ugne et al. (2016) The PSI-U1 snRNP interaction regulates male mating behavior in Drosophila. Proc Natl Acad Sci U S A 113:5269-74
Muller, Ryan Y; Hammond, Ming C; Rio, Donald C et al. (2015) An Efficient Method for Electroporation of Small Interfering RNAs into ENCODE Project Tier 1 GM12878 and K562 Cell Lines. J Biomol Tech 26:142-9
Lee, Yeon; Rio, Donald C (2015) Mechanisms and Regulation of Alternative Pre-mRNA Splicing. Annu Rev Biochem 84:291-323
Majumdar, Sharmistha; Rio, Donald C (2015) P Transposable Elements in Drosophila and other Eukaryotic Organisms. Microbiol Spectr 3:MDNA3-0004-2014
Horan, Lucas; Yasuhara, Jiro C; Kohlstaedt, Lori A et al. (2015) Biochemical identification of new proteins involved in splicing repression at the Drosophila P-element exonic splicing silencer. Genes Dev 29:2298-311
Taliaferro, J Matthew; Marwha, Dhruv; Aspden, Julie L et al. (2013) The Drosophila splicing factor PSI is phosphorylated by casein kinase II and tousled-like kinase. PLoS One 8:e56401

Showing the most recent 10 out of 12 publications