Major DNA transactions such as transcription, development, X-chromosome inactivation and chromosomal translocations in cancer cells were reported to be controlled by chromosome to chromosome contacts called """"""""chromosome kissing"""""""" mediated by a myb-like terminator protein called Reb1. We have recently shown in a paper to be published in Cell that chromosome kissing in fission yeast also controls replication fork movement by controlling sequence-specific, physiologically programmed fork arrest. This finding raises some major questions: (i) which proteins are involved in controlling chromosome kissing and what are their mechanisms of action?;(ii) what is the mechanism of programmed fork arrest? In the context of addressing the first question, we have discovered that two chromatin remodeling proteins of fission yeast modulate programmed fork arrest. The implication is that these remodelers do this by modulating chromosome kissing and nucleosome disposition about the replication termini. One of the goals of this proposal is to discover in a genome-wide search the proteins that modulate chromosome kissing and try to understand their mechanism of action. Another important goal of this proposal is to uncover the mechanism of action of programmed fork arrest by testing the hypothesis that this happens by unidirectional arrest of the MCM2-7 helicase. Programmed fork arrest controls other chromosome transactions such as recombination, gene silencing and transcriptional passage and is at the interphase of replication and other processes. Finally, experiments are proposed to localize genome-wide Reb1-dependent replication termini. The objectives of this goal is to test two hypotheses: (i) naturally occurring, noncanonical weak sites are rendered functional by chromosome kissing and/or DNA looping -dependent interaction with strong canonical sites and that is one function of these long range protein- DNA interactions;(ii) a function of looping-dependent (or independent) fork arrest is to prevent interference between replication and transcription.

Public Health Relevance

The existing models of replication control are two dimensional consisting of proteins that interact with sequences of a single chromosome at a time to initiate replication, promote fork progression etc. Our recent work shows that replication control is 3 dimensional. This application proposes to investigate further this mechanism that is potentially relevant to human diseases such as cancer.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM098013-04
Application #
8638786
Study Section
Special Emphasis Panel (ZRG1-GGG-N (03))
Program Officer
Reddy, Michael K
Project Start
2011-07-01
Project End
2015-03-31
Budget Start
2014-04-01
Budget End
2015-03-31
Support Year
4
Fiscal Year
2014
Total Cost
$402,024
Indirect Cost
$128,086
Name
Medical University of South Carolina
Department
Biochemistry
Type
Schools of Medicine
DUNS #
183710748
City
Charleston
State
SC
Country
United States
Zip Code
29425
Jaiswal, Rahul; Choudhury, Malay; Zaman, Shamsu et al. (2016) Functional architecture of the Reb1-Ter complex of Schizosaccharomyces pombe. Proc Natl Acad Sci U S A 113:E2267-76
Bastia, Deepak; Srivastava, Pankaj; Zaman, Shamsu et al. (2016) Phosphorylation of CMG helicase and Tof1 is required for programmed fork arrest. Proc Natl Acad Sci U S A 113:E3639-48
Choudhury, Malay; Zaman, Shamsu; Jiang, James C et al. (2015) Mechanism of regulation of 'chromosome kissing' induced by Fob1 and its physiological significance. Genes Dev 29:1188-201
Jaiswal, Rahul; Singh, Samarendra K; Bastia, Deepak et al. (2015) Crystallization and preliminary X-ray characterization of the eukaryotic replication terminator Reb1-Ter DNA complex. Acta Crystallogr F Struct Biol Commun 71:414-8
Bastia, Deepak; Zaman, Shamsu (2014) Mechanism and physiological significance of programmed replication termination. Semin Cell Dev Biol 30:165-73