This continuing project is focused on developing new approaches, methods, and strategies for the discovery of metalloprotein inhibitors. Metalloproteins are an important class of medicinal targets that are relevant to treating numerous diseases including but not limited to cancer, arthritis, and bacterial infections. Most therapeutics that inhibit metalloproteins employ a metal-binding pharmacophore (MBP) to bind to the active site metal ion. Despite the importance of these MBPs, few studies have focused on methods to identify, optimize, and understand what MBPs are best for a given metalloprotein target of interest. In the last research period (9/2011 - 7/2014, ~34 months at the time of this renewal submission), this program generated several new findings relevant to metalloprotein inhibitors, including: a) screening of an MBP isostere library against several metalloproteins targets and developing sub libraries of hit compounds; b) obtaining thermodynamic and structural data on MBPs in an archetypal metalloprotein (carbonic anhydrase); c) modeling of these interactions using computational approaches in order to understand the molecular basis for our findings; and d) assessing the on-target selectivity of several metalloprotein inhibitors. The previous project period was very productive, yielding ~15 manuscripts, one book chapter, several patent disclosures, and contributing to the formation of a biotechnology startup company. In ongoing studies, we propose to greatly expand our current efforts, as well as explore other areas of investigation relevant to the discovery, development, and optimization of metalloprotein inhibitors.
In Specific Aim 1, we will develop new MBP libraries that are rationally tailored toward certain classes of metalloproteins (e.g. those with dinuclear active sites containing two adjacent metal ions).
In Specific Aim 2, we will expand our efforts on the structural biology and computational modeling of MBP binding, including an examination of how changes in metal ion active site composition alter MBP affinity.
In Specific Aim 3, we will study the selectivity of metalloprotein inhibitors for their target enzymes. We will evaluate the activit of metalloprotein inhibitors in the presence of competing metalloproteins and investigate how treatment with metalloenzyme inhibitors perturbs metal ion homeostasis in living cells. Finally, we will continue to aid investigators around the world by screening our libraries against new metalloprotein targets and by developing sub libraries that take these efforts from hit-to-lead.

Public Health Relevance

Drugs that inhibit metalloenzymes, which are metal-dependent enzymes, are important in the treatment of many illnesses ranging from cancer to infectious diseases. This project seeks to develop innovative approaches for the discovery of new, more effective metalloenzyme inhibitors. A deeper understanding of the interactions between inhibitors and metalloenzymes will provide vital insight to guide the design and development of this essential, but underexploited class of therapeutics.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM098435-06
Application #
9099908
Study Section
Synthetic and Biological Chemistry A Study Section (SBCA)
Program Officer
Fabian, Miles
Project Start
2011-09-01
Project End
2019-05-31
Budget Start
2016-06-01
Budget End
2017-05-31
Support Year
6
Fiscal Year
2016
Total Cost
Indirect Cost
Name
University of California San Diego
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
804355790
City
La Jolla
State
CA
Country
United States
Zip Code
92093
Dick, Benjamin L; Cohen, Seth M (2018) Metal-Binding Isosteres as New Scaffolds for Metalloenzyme Inhibitors. Inorg Chem 57:9538-9543
Credille, Cy V; Dick, Benjamin L; Morrison, Christine N et al. (2018) Structure-Activity Relationships in Metal-Binding Pharmacophores for Influenza Endonuclease. J Med Chem 61:10206-10217
Chen, Allie Y; Adamek, Rebecca N; Dick, Benjamin L et al. (2018) Targeting Metalloenzymes for Therapeutic Intervention. Chem Rev :
Dick, Benjamin L; Patel, Ashay; McCammon, J Andrew et al. (2017) Effect of donor atom identity on metal-binding pharmacophore coordination. J Biol Inorg Chem 22:605-613
Chen, Yao; Lai, Barry; Zhang, Zhenjie et al. (2017) The effect of metalloprotein inhibitors on cellular metal ion content and distribution. Metallomics 9:250-257
Cohen, Seth M (2017) A Bioinorganic Approach to Fragment-Based Drug Discovery Targeting Metalloenzymes. Acc Chem Res 50:2007-2016
Credille, Cy V; Chen, Yao; Cohen, Seth M (2016) Fragment-Based Identification of Influenza Endonuclease Inhibitors. J Med Chem 59:6444-54
Daniel, Kevin B; Callmann, Cassandra E; Gianneschi, Nathan C et al. (2016) Dual-responsive nanoparticles release cargo upon exposure to matrix metalloproteinase and reactive oxygen species. Chem Commun (Camb) 52:2126-8
Daniel, Kevin B; Sullivan, Eric D; Chen, Yao et al. (2015) Dual-Mode HDAC Prodrug for Covalent Modification and Subsequent Inhibitor Release. J Med Chem 58:4812-21
Perez, Christian; Monserrat, Jean-Philippe; Chen, Yao et al. (2015) Exploring hydrogen peroxide responsive thiazolidinone-based prodrugs. Chem Commun (Camb) 51:7116-9

Showing the most recent 10 out of 36 publications