There is a fundamental need to rapidly and efficiently build complex molecules from simple building blocks. The long-term goal of this program is to construct such molecules from readily accessible starting materials through dual-metal catalysis with organo Gold intermediates. The value of this dual-catalytic strategy is that it reduces the number of synthetic steps required, while also giving access to new synthetic bond disconnections and unique chemo- and regioselectivities. This strategy therefore substantially enriches the toolkit of bond- forming strategies available in pharmaceutical development. This approach is innovative because it combines the power of gold catalysts to rearrange and activate substrates with the selectivity of other metal catalysts to form new bonds. The rationale for this approach is the demonstrated cooperative catalysis of gold and palladium, through which the PI established the synthetic potential of these dual-catalytic methods in the construction of butenolides, isocoumarins, and nitrogen-containing heterocycles, three classes of molecules with known biological activity. This concept first will be applied to reactions that construct carbon-oxygen and carbon-carbon bonds in one synthetic transformation in order to synthesize other biologically relevant heterocycles. This strategy is efficient because it does not require the separate synthetic preparation and manipulation of a stoichiometric organometallic reagent;instead, the reactive compounds are generated in situ, allowing for faster and more economical development of pharmaceutical targets. Once this strategy is demonstrated through its application to oxygen-containing heterocycles, we will apply it to develop a variety of other significant dual-catalyzed reactions. The following expected outcomes are anticipated: First, the unique bond disconnections and chemoselectivities of the reactions are expected to provide access to biologically active compounds not easily available through traditional pathways. Second, the dual-catalytic pathways are expected to increase the efficiency of the synthesis of therapeutic agents used to treat human disease by removing the need for separate synthetic preparation of stoichiometric organometallic reagents. These outcomes are expected to have an important positive impact because they significantly expedite drug discovery at the same time that undesired chemical waste byproducts are minimized. As advances in chemical biology continue to spur the identification of new therapeutic targets, this ability to quickly and efficietly assemble complex molecules through dual catalysis will ensure the timely development of new pharmaceuticals for the benefit of human health.

Public Health Relevance

The new catalytic methods that will result from the proposed research will provide efficient routes from simple building blocks to biologically active compounds, significantly facilitating the preparation of these compounds for drug discovery. The increased accessibility of these pharmaceutical candidates will permit the rapid development of compounds that improve human health.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM098512-03
Application #
8658107
Study Section
Synthetic and Biological Chemistry A Study Section (SBCA)
Program Officer
Lees, Robert G
Project Start
2012-08-01
Project End
2016-04-30
Budget Start
2014-05-01
Budget End
2015-04-30
Support Year
3
Fiscal Year
2014
Total Cost
$273,240
Indirect Cost
$84,826
Name
University of California Irvine
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
046705849
City
Irvine
State
CA
Country
United States
Zip Code
92697
Issaian, Adena; Faizi, Darius J; Bailey, Johnathan O et al. (2017) Mechanistic Studies of Formal Thioboration Reactions of Alkynes. J Org Chem 82:8165-8178
Faizi, Darius J; Davis, Ashlee J; Meany, Fiach B et al. (2016) Catalyst-Free Formal Thioboration to Synthesize Borylated Benzothiophenes and Dihydrothiophenes. Angew Chem Int Ed Engl 55:14286-14290
Faizi, Darius J; Issaian, Adena; Davis, Ashlee J et al. (2016) Catalyst-Free Synthesis of Borylated Lactones from Esters via Electrophilic Oxyboration. J Am Chem Soc 138:2126-9
Tu, Kim N; Hirner, Joshua J; Blum, Suzanne A (2016) Oxyboration with and without a Catalyst: Borylated Isoxazoles via B-O ?-Bond Addition. Org Lett 18:480-3
Hirner, Joshua J; Blum, Suzanne A (2015) NMR spectroscopy studies of electronic effects and equilibrium in the organogold-to-boron transmetalation reaction and studies towards its application to the alkoxyboration addition of boron-oxygen ? bonds to alkynes. Tetrahedron 71:4445-4449
Chong, Eugene; Blum, Suzanne A (2015) Aminoboration: Addition of B-N ? Bonds across C-C ? Bonds. J Am Chem Soc 137:10144-7
Al-Amin, Mohammad; Johnson, Joel S; Blum, Suzanne A (2014) Selectivity, Compatibility, Downstream Functionalization, and Silver Effect in the Gold and Palladium Dual-Catalytic Synthesis of Lactones. Organometallics 33:5448-5456
Hirner, Joshua J; Faizi, Darius J; Blum, Suzanne A (2014) Alkoxyboration: ring-closing addition of B-O ? bonds across alkynes. J Am Chem Soc 136:4740-5
Al-Amin, Mohammad; Roth, Katrina E; Blum, Suzanne A (2014) Mechanistic Studies of Gold and Palladium Cooperative Dual-Catalytic Cross-Coupling Systems. ACS Catal 4:622-629
Hirner, Joshua J; Roth, Katrina E; Shi, Yili et al. (2012) Mechanistic Studies of Azaphilic versus Carbophilic Activation by Gold(I) in the Gold/Palladium Dual-Catalyzed Rearrangement of Alkenyl Vinyl Aziridines. Organometallics 31:6843-6850