Enter the text here that is the new abstract information for your application. This section must be no longer than 30 lines of text. Project Summary (no changes): The primary goal of this project is to provide the infrastructure for the Critical Assessment of Structure Prediction (CASP) program, dedicated to the objective evaluation of macromolecular structure modeling methods. Extensive knowledge of protein and RNA structures will significantly aid the investigation of macromolecular function, interactions, and biochemical pathways. It will also have a major impact on the understanding of biology and human disease, and eventually on drug design. Experimental determination of structure is inherently time-consuming and costly. For macromolecules that have not been addressed by experiment, a computational modeling approach often provides an alternative. Modeling methods, however, are continually evolving and vary in their effectiveness. The CASP process was established to answer two main questions: First, what level of modeling quality can be expected of these techniques? And second, which methods offer the most promise for continued development? CASP is a community-wide program, with over 200 research groups world-wide submitting over 85,000 predictions in the last round. Our group is the primary infrastructure resource for CASP, and handles processing of predictions, develops and implements evaluation software, performs prediction assessment, develops analysis and display tools, and facilitates access to predictions and their evaluation data. We propose to support the current biennial operation of CASP and to expand it by the addition of assessments performed on a continuing basis. To increase the supply of interesting modeling targets we will systematically broaden the network of collaborating crystallography and NMR spectroscopy research groups, including new centers dedicated to the determination of structure of membrane proteins. The expanded network will also be capable of providing the still rare RNA structures, allowing extension of CASP to the assessment of RNA structure modeling. To help overcome the most significant obstacles to progress in structure prediction, we will add a class of specialized assessments focused on specific stages of the modeling process, providing a means of evaluating the performance of these individual steps. Finally, we will place special emphasis on interactions with teachers and researchers throughout academia, with the goal of disseminating the insights and wealth of data gained through CASP.

Public Health Relevance

(no changes): Knowledge of macromolecular structure plays a crucial role in biology and medicine, allowing for detailed studies and understanding of biological processes and disease mechanisms. Yet, relatively few structures are obtained experimentally - the rest must be modeled. The Critical Assessment of Structure Prediction program (CASP), provides the primary means of evaluating performance of the methods dedicated to this task.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
3R01GM100482-03S1
Application #
9003193
Study Section
Special Emphasis Panel (ZRG1-BCMB-B (02))
Program Officer
Wehrle, Janna P
Project Start
2012-06-15
Project End
2016-04-30
Budget Start
2014-05-01
Budget End
2015-04-30
Support Year
3
Fiscal Year
2015
Total Cost
$52,374
Indirect Cost
$18,693
Name
University of California Davis
Department
Biochemistry
Type
Schools of Medicine
DUNS #
047120084
City
Davis
State
CA
Country
United States
Zip Code
95618
Schaarschmidt, Joerg; Monastyrskyy, Bohdan; Kryshtafovych, Andriy et al. (2018) Assessment of contact predictions in CASP12: Co-evolution and deep learning coming of age. Proteins 86 Suppl 1:51-66
Lafita, Aleix; Bliven, Spencer; Kryshtafovych, Andriy et al. (2018) Assessment of protein assembly prediction in CASP12. Proteins 86 Suppl 1:247-256
Kryshtafovych, Andriy; Monastyrskyy, Bohdan; Fidelis, Krzysztof et al. (2018) Evaluation of the template-based modeling in CASP12. Proteins 86 Suppl 1:321-334
Ogorzalek, Tadeusz L; Hura, Greg L; Belsom, Adam et al. (2018) Small angle X-ray scattering and cross-linking for data assisted protein structure prediction in CASP 12 with prospects for improved accuracy. Proteins 86 Suppl 1:202-214
Kryshtafovych, Andriy; Monastyrskyy, Bohdan; Fidelis, Krzysztof et al. (2018) Assessment of model accuracy estimations in CASP12. Proteins 86 Suppl 1:345-360
Kryshtafovych, Andriy; Albrecht, Reinhard; Baslé, Arnaud et al. (2018) Target highlights from the first post-PSI CASP experiment (CASP12, May-August 2016). Proteins 86 Suppl 1:27-50
Moult, John; Fidelis, Krzysztof; Kryshtafovych, Andriy et al. (2018) Critical assessment of methods of protein structure prediction (CASP)-Round XII. Proteins 86 Suppl 1:7-15
Kryshtafovych, Andriy; Moult, John; Baslé, Arnaud et al. (2016) Some of the most interesting CASP11 targets through the eyes of their authors. Proteins 84 Suppl 1:34-50
Lensink, Marc F; Velankar, Sameer; Kryshtafovych, Andriy et al. (2016) Prediction of homoprotein and heteroprotein complexes by protein docking and template-based modeling: A CASP-CAPRI experiment. Proteins 84 Suppl 1:323-48
Moult, John; Fidelis, Krzysztof; Kryshtafovych, Andriy et al. (2016) Critical assessment of methods of protein structure prediction: Progress and new directions in round XI. Proteins 84 Suppl 1:4-14

Showing the most recent 10 out of 27 publications