Ribonucleotide reductase (RR) key to maintaining life as it catalyzes the slowest step in de novo DNTP synthesis by reducing ribonucleotides to deoxy ribonucleotides. RR is a multi-subunit enzyme consisting of a subunit that contains two allosteric sites and a catalytic site, and a b subunit that houses a free-radical that initiates thol-based catalysis. For almost 40 years RRs were thought to exist as heterotetramers. This organization failed, however, to explain how dATP inactivates and ATP activates the enzyme. Recently, this view has been challenged by biochemical data from other labs and structural data reported by us that support the existence of higher-order oligomers induced by its activator ATP and its inhibitor dATP. Interestingly, though ATP is an activator and dATP is an inhibitor of RR, they both cause the subunit to hexamerize. We propose that the two hexamers have different packing arrangements which lead to opposite outcomes of RR activity. Additionally, two important cancer drugs, gemcitabine and clofarabine are known to bind to higher-order RR oligomers. Thus, it is becoming increasingly clear that for an understanding of how RR is regulated in eukaryotes and targeted by cancer drugs, it is essential to elucidate the structure of higher-order oligomers formed by eukaryotic RRs. As higher-order holo-complexes may not be amenable to X-ray crystallography, we propose to use X-ray crystallography to determine the high-resolution structures of RR1 oligomers and single-particle electron microscopy (EM) to elucidate the organization of RR1 and RR2 in the holo-complexes.

Public Health Relevance

Ribonucleotide reductase (RRs) is a multi-subunit enzyme consisting of a large and small subunit. Recent studies show that the allosteric activator ATP and inhibitor dATP regulate RR by inducing hexamerization of the large subunit. This is a departure from the previously held view of a RR heterotetramer. In the current proposal, we will investigate how RR is regulated by ATP and dATP through oligomerization and how RR oligomers are targeted by cancer drugs using X-ray crystallography, cryo-EM and site- directed mutagenesis.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Project (R01)
Project #
Application #
Study Section
Macromolecular Structure and Function E Study Section (MSFE)
Program Officer
Flicker, Paula F
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Case Western Reserve University
Schools of Medicine
United States
Zip Code
Huff, Sarah E; Mohammed, Faiz Ahmad; Yang, Mu et al. (2018) Structure-Guided Synthesis and Mechanistic Studies Reveal Sweetspots on Naphthyl Salicyl Hydrazone Scaffold as Non-Nucleosidic Competitive, Reversible Inhibitors of Human Ribonucleotide Reductase. J Med Chem 61:666-680
Ahmad, Md Faiz; Alam, Intekhab; Huff, Sarah E et al. (2017) Potent competitive inhibition of human ribonucleotide reductase by a nonnucleoside small molecule. Proc Natl Acad Sci U S A 114:8241-8246
Misko, Tessianna A; Wijerathna, Sanath R; Radivoyevitch, Tomas et al. (2016) Inhibition of yeast ribonucleotide reductase by Sml1 depends on the allosteric state of the enzyme. FEBS Lett 590:1704-12
Ahmad, Md Faiz; Huff, Sarah E; Pink, John et al. (2015) Identification of Non-nucleoside Human Ribonucleotide Reductase Modulators. J Med Chem 58:9498-509
Wan, Qun; Bennett, Brad C; Wilson, Mark A et al. (2014) Toward resolving the catalytic mechanism of dihydrofolate reductase using neutron and ultrahigh-resolution X-ray crystallography. Proc Natl Acad Sci U S A 111:18225-30
Ahmad, Md Faiz; Dealwis, Chris G (2013) The structural basis for the allosteric regulation of ribonucleotide reductase. Prog Mol Biol Transl Sci 117:389-410
Ahmad, Md Faiz; Wan, Qun; Jha, Shalini et al. (2012) Evaluating the therapeutic potential of a non-natural nucleotide that inhibits human ribonucleotide reductase. Mol Cancer Ther 11:2077-86