The human genome has been sequenced for a decade, but solving how proteins fold and assemble into complexes remains a challenge. More than half of all proteins -- including 95% of integral membrane proteins -- do not crystallize and thus their structures cannot be determined by crystallography. Our project addresses this problem by creating an instrument that can determine atomic-resolution structures of individual biological macromolecules without requiring crystallization. We propose to merge four distinct technologies that should allow structures of macromolecules up to a megaDalton to be resolved at high resolution (better than 2 ?) in a few hours. The key steps are a) to electrospray and purify macromolecules by mass spectrometry, b) to quickly chill these macromolecules to near absolute zero temperature with superfluidic helium droplets, c) to controllably orient several thousand chilled macromolecules to within ~1? for 50 ?s using intense elliptically polarized IR laser light while confining them in a small """"""""diffraction"""""""" zone, and d) to collect continuous diffraction images from these oriented macromolecules using a pulsed electron beam. Steps c) and d) will be repeated for each orientation to span the reciprocal space at 1? intervals by rotating the polarization of the laser. The continuous diffraction images provide sufficient information to directly calculate phases by well-established oversampling methods thereby directly yielding electron density maps. In this grant period, our goal is to demonstrate the proof-of-concept by recording anisotropic electron diffraction images from laser aligned protein ions embedded in superfluid helium droplets. Further development will address the resolution and quality of data issues with major improvements in experimental hardware. This idea is based on recent breakthroughs in several disciplines. A large body of evidence has established that protein complexes can retain their conformation, remain associated in large multimeric complexes and keep ligands bound in vacuo after electrospray ionization. Capitalizing on recent advances in laser-induced alignment at superfluid helium temperatures (0.37 Kelvin), our proposed instrument will instantaneously freeze macromolecules, allowing them to be oriented within 1? in all three Euler angles by a 200,000 V/cm electric field generated by the IR laser. Ultimately, this approach will allow structures to be determined at high resolution in a few hours from a few nanomoles of partially purified complexes of proteins that are otherwise inaccessible by current methods. If successful, this instrument will reshape the landscape of structural biology, transform structure-based drug screening, allow rapid determination of the effects of mutations on structure, and open new realms of biophysics to understand the effects of solvent on structure.

Public Health Relevance

While the human genome was sequenced a decade ago, we are unable to probe the actual structure of more than half of all proteins and other machinery produced by the genome. Using our new approach, we hope to fill this void thereby providing new insights into how mutations cause diseases and how drug bind to their targets.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
1R01GM101392-01A1
Application #
8507067
Study Section
Macromolecular Structure and Function C Study Section (MSFC)
Program Officer
Flicker, Paula F
Project Start
2013-09-01
Project End
2017-04-30
Budget Start
2013-09-01
Budget End
2014-04-30
Support Year
1
Fiscal Year
2013
Total Cost
$262,311
Indirect Cost
$72,310
Name
Oregon State University
Department
Chemistry
Type
Schools of Earth Sciences/Natur
DUNS #
053599908
City
Corvallis
State
OR
Country
United States
Zip Code
97339
He, Yunteng; Zhang, Jie; Lei, Lei et al. (2017) Self-Assembly of Iodine in Superfluid Helium Droplets: Halogen Bonds and Nanocrystals. Angew Chem Int Ed Engl 56:3541-3545
Alghamdi, Maha; Zhang, Jie; Oswalt, Andrew et al. (2017) Doping of Green Fluorescent Protein into Superfluid Helium Droplets: Size and Velocity of Doped Droplets. J Phys Chem A 121:6671-6678
Zhang, Jie; He, Yunteng; Kong, Wei (2016) Communication: Electron diffraction of ferrocene in superfluid helium droplets. J Chem Phys 144:221101
He, Yunteng; Zhang, Jie; Kong, Wei (2016) Electron impact ionization and multiphoton ionization of doped superfluid helium droplets: A comparison. J Chem Phys 144:084302
He, Yunteng; Zhang, Jie; Kong, Wei (2016) Electron diffraction of CBr4 in superfluid helium droplets: A step towards single molecule diffraction. J Chem Phys 145:034307
Zhang, Jie; Chen, Lei; Freund, William M et al. (2015) Effective doping of low energy ions into superfluid helium droplets. J Chem Phys 143:074201
He, Yunteng; Zhang, Jie; Li, Yang et al. (2015) Facile time-of-flight methods for characterizing pulsed superfluid helium droplet beams. Rev Sci Instrum 86:084102
Chen, Lei; Zhang, Jie; Freund, William M et al. (2015) Effect of kinetic energy on the doping efficiency of cesium cations into superfluid helium droplets. J Chem Phys 143:044310
Zhang, Jie; He, Yunteng; Freund, William M et al. (2014) Electron Diffraction of Superfluid Helium Droplets. J Phys Chem Lett 5:1801-1805