Biofilms are surface attached microbial communities that predominates infection sites, and are of keen medical importance as they resist killing by antibiotics and the immune system. Progress in understanding how biofilm cells interact to elicit phenotypic changes has been impeded by limited strategies to probe their cellular interactions. Here, we seek to fill-in knowledge gaps by describing a novel process where cells within biofilms exchange their outer membrane (OM) lipoproteins, which result in phenotypic changes. Our model organism, Myxococcus xanthus, is a social gram-negative bacterium that can undergo multicellular development, is used to probe biofilm cellular dynamics. In preliminary results we now show that OMs are also exchanged and we identify cellular proteins required for transfer. We also show that transfer, which only occurs in structured biofilms, involves kin recognition whereby cells distinguish themselves from other closely related M. xanthus isolates. As transfer involves costly bulk movement of OM material, we believe this exchange process is a form of cooperative behavior where cells communicate and share resources. Lastly, we show transfer regulates swarm expansion and may be mediated by nanotube structures. Our results have broad implications as eukaryotic cells are widely known to exchange cellular components, and in bacterial systems, protein exchange is beginning to be appreciated as a prevalent process involved in communication and diverse cellular processes. Our genetic system is well poised to tackle these fundamental issues. Here, in Aim 1 we will use genetic approaches to identify the cellular complement of proteins involved in transfer, and define their interactions an the role nanotubes might play in transfer.
Aim 2 will characterize the mechanism of kin recognition in transfer and define the genetic determinant for cell-cell recognition.
Aim 3 will determine how OM exchange regulates swam expansion and a role it might play in development and envelope homeostasis. These combined efforts will advance our mechanistic understanding of how biofilm cells interact, recognize one another and exchange cellular material, which results in phenotypic changes that are distinct from planktonic or isolated cells.

Public Health Relevance

Biofilms are dense microbial mats that are medically important as they account for most microbial infections. Biofilm infections are difficult and expensive to treat because they are resistant to the host immune system and antimicrobial agents. This proposal seeks to investigate novel cell interactions in biofilms, which may advance our understanding of biofilms and consequently lead to improved intervention strategies.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
4R01GM101449-05
Application #
8998031
Study Section
Prokaryotic Cell and Molecular Biology Study Section (PCMB)
Program Officer
Reddy, Michael K
Project Start
2012-05-01
Project End
2018-01-31
Budget Start
2016-02-01
Budget End
2018-01-31
Support Year
5
Fiscal Year
2016
Total Cost
Indirect Cost
Name
University of Wyoming
Department
Biochemistry
Type
Earth Sciences/Resources
DUNS #
069690956
City
Laramie
State
WY
Country
United States
Zip Code
82071
Troselj, Vera; Cao, Pengbo; Wall, Daniel (2018) Cell-cell recognition and social networking in bacteria. Environ Microbiol 20:923-933
Troselj, Vera; Wall, Daniel (2018) Metabolic disharmony and sibling conflict mediated by T6SS. Microb Cell 5:256-258
Troselj, Vera; Treuner-Lange, Anke; Søgaard-Andersen, Lotte et al. (2018) Physiological Heterogeneity Triggers Sibling Conflict Mediated by the Type VI Secretion System in an Aggregative Multicellular Bacterium. MBio 9:
Cao, Pengbo; Wall, Daniel (2017) Self-identity reprogrammed by a single residue switch in a cell surface receptor of a social bacterium. Proc Natl Acad Sci U S A 114:3732-3737
Vassallo, Christopher N; Cao, Pengbo; Conklin, Austin et al. (2017) Infectious polymorphic toxins delivered by outer membrane exchange discriminate kin in myxobacteria. Elife 6:
Wall, Daniel (2016) Kin Recognition in Bacteria. Annu Rev Microbiol 70:143-60
Dey, Arup; Vassallo, Christopher N; Conklin, Austin C et al. (2016) Sibling Rivalry in Myxococcus xanthus Is Mediated by Kin Recognition and a Polyploid Prophage. J Bacteriol 198:994-1004
Vassallo, Christopher N; Wall, Daniel (2016) Tissue repair in myxobacteria: A cooperative strategy to heal cellular damage. Bioessays 38:306-15
Cao, Pengbo; Dey, Arup; Vassallo, Christopher N et al. (2015) How Myxobacteria Cooperate. J Mol Biol 427:3709-21
Vassallo, Christopher; Pathak, Darshankumar T; Cao, Pengbo et al. (2015) Cell rejuvenation and social behaviors promoted by LPS exchange in myxobacteria. Proc Natl Acad Sci U S A 112:E2939-46

Showing the most recent 10 out of 15 publications