Cytochrome P450 17A1 (CYP17A1) is a dual-function monooxygenase with a key role in human steroidogenesis. Since CYP17A1 is essential for androgen and estrogen production, understanding how this enzyme functions has practical value in reproductive biology, hormone-responsive chemotherapy, and the understanding of diseases resulting from CYP17A1 defects. To date, investigations of CYP17A1 have been limited by the absence of experimental structural information of this membrane protein. The first structures now show that inhibitors bind very differently from proposed and provide a new opportunity to evaluate CYP17A1 binding, catalysis, and inhibition at a substantially more detailed level. The objective of this proposal is to understand the mechanisms controlling the multifunctional reactions of CYP17A1 through convergent structural, synthetic, and functional approaches. Our central hypothesis is that steroidal substrates bind in an overall orientation similar to that observed for inhibitors in the new structures, but with tight spatial control of liand position and proton delivery directing substrates toward either hydroxylation or lyase reactions. Specifically we will test this hypothesis by 1) generation of X-ray structures that determine substrate binding orientations and interactions with CYP17A1, 2) functional evaluation of key amino acids in substrate binding and catalysis and of proposed mechanisms for hydroxylase vs. lyase reactions, and 3) testing our understanding of CYP17A1 function via the design, synthesis, and evaluation of novel probe substrates and inhibitors. The expected outcome is a detailed understanding of the structural features that control binding and catalysis of native CYP17A1 substrates for both catalytic reactions. The proposed research generates a substantial knowledgebase to guide the design, development, and improvement of more effective pharmaceutical inhibitors with improved selectivity for CYP17A1 and its lyase activity. These outcomes meet NIH goals by probing an important enzyme in hormone biosynthesis that can potentially be manipulated for the treatment of androgen-sensitive and estrogen-responsive cancers, as well as other steroid-related diseases.

Public Health Relevance

The proposed research investigates how a particular human enzyme functions to produce steroids that function as sex steroids. Understanding how this enzyme functions has practical value in normal reproductive biology, as well as the potential for treating polycystic ovary syndrome and prostate, ovarian, and breast cancers.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Project (R01)
Project #
Application #
Study Section
Molecular and Cellular Endocrinology Study Section (MCE)
Program Officer
Okita, Richard T
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Kansas Lawrence
Schools of Pharmacy
United States
Zip Code
Fehl, Charlie; Vogt, Caleb D; Yadav, Rahul et al. (2018) Structure-Based Design of Inhibitors with Improved Selectivity for Steroidogenic Cytochrome P450 17A1 over Cytochrome P450 21A2. J Med Chem 61:4946-4960
Li, Ao; Turro, Claudia; Kodanko, Jeremy J (2018) Ru(ii) polypyridyl complexes as photocages for bioactive compounds containing nitriles and aromatic heterocycles. Chem Commun (Camb) 54:1280-1290
Yadav, Rahul; Petrunak, Elyse M; Estrada, D Fernando et al. (2017) Structural insights into the function of steroidogenic cytochrome P450 17A1. Mol Cell Endocrinol 441:68-75
Petrunak, Elyse M; Rogers, Steven A; Aubé, Jeffrey et al. (2017) Structural and Functional Evaluation of Clinically Relevant Inhibitors of Steroidogenic Cytochrome P450 17A1. Drug Metab Dispos 45:635-645
Li, Ao; Yadav, Rahul; White, Jessica K et al. (2017) Illuminating cytochrome P450 binding: Ru(ii)-caged inhibitors of CYP17A1. Chem Commun (Camb) 53:3673-3676
Bonomo, Silvia; Hansen, Cecilie H; Petrunak, Elyse M et al. (2016) Promising Tools in Prostate Cancer Research: Selective Non-Steroidal Cytochrome P450 17A1 Inhibitors. Sci Rep 6:29468
Estrada, D Fernando; Laurence, Jennifer S; Scott, Emily E (2016) Cytochrome P450 17A1 Interactions with the FMN Domain of Its Reductase as Characterized by NMR. J Biol Chem 291:3990-4003
Scott, Emily E; Wolf, C Roland; Otyepka, Michal et al. (2016) The Role of Protein-Protein and Protein-Membrane Interactions on P450 Function. Drug Metab Dispos 44:576-90
Petrunak, Elyse M; DeVore, Natasha M; Porubsky, Patrick R et al. (2014) Structures of human steroidogenic cytochrome P450 17A1 with substrates. J Biol Chem 289:32952-64