The vast majority of medications and biologically active natural products contain carbon- carbon bonds. The synthesis of these, and related small molecules, is therefore reliant on carbon-carbon bond-forming reactions. It follows that innovative approaches to efficient C-C bond formations will broaden the diversity of small molecules easily accessible and accelerate the discovery of drugs. The overall objective of this application is to develop novel and practical methods for sp3-C-H bond functionalizations/C-C couplings with very weakly acidic C-H's (pKa's 32 to over 40). Two mechanistic-based strategies are pursued to achieve this objective. The first involves activation of arenes toward mild deprotonation by coordination to transition metal catalysts, and encompasses enantioselective variants. Among the products of these reactions are tiarylmethanes and diarylmethylamines. The second approach is based on deprotonative cross-coupling procedures (DCCP's) wherein sp3-C-H's with pKa's as high as 35 are deprotonated under catalytic conditions and coupled with aryl halides. To perform this challenging class of reactions, new catalysts have been identified with unprecedented reactivity. By study of the mechanism of these catalysts, fundamentally new guiding principles have been revealed that are of interest to the greater chemistry community. This catalysts will be applied to DCCP's of unactivated diarylmethanes, allylbenzenes, N,N-dialkylbenzylamines, sulfoxides, sulfonamides, and sulfones to generate novel arylated products. The proposed method development, and mechanistic insight, will provide a collection of practical tools that enable new and efficient bond constructions that are easily applied to the synthesis of medications. The two approaches to C-C bond-formation in this application are innovative because they represent a clear departure from known chemistry.

Public Health Relevance

The science and art of preventing and managing disease and prolonging life is dependent on advances in medicine, biology, and biochemistry. Many of these advances will involve interaction of small molecules with biological entities. As such, they will rely on the efficient synthesis of active compounds with precise control over stereochemistry, which is a long-term objective of the research outlined herein.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
4R01GM104349-04
Application #
9112003
Study Section
Synthetic and Biological Chemistry B Study Section (SBCB)
Program Officer
Lees, Robert G
Project Start
2013-09-15
Project End
2017-07-31
Budget Start
2016-08-01
Budget End
2017-07-31
Support Year
4
Fiscal Year
2016
Total Cost
Indirect Cost
Name
University of Pennsylvania
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
042250712
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Zhang, Shuguang; Hu, Bowen; Zheng, Zhipeng et al. (2018) Palladium-Catalyzed Triarylation of sp3 C-H Bonds in Heteroarylmethanes: Synthesis of Triaryl(heteroaryl)methanes. Adv Synth Catal 360:1493-1498
Li, Minyan; Gutierrez, Osvaldo; Berritt, Simon et al. (2017) Transition-metal-free chemo- and regioselective vinylation of azaallyls. Nat Chem 9:997-1004
Gao, Gui; Fu, Yue; Li, Minyan et al. (2017) Arylation of Azaarylmethylamines with Aryl Chlorides and a NiBr2/NIXANTPHOS-based Catalyst. Adv Synth Catal 359:2890-2894
Ablajan, Keyume; Panetti, Grace B; Yang, Xiaodong et al. (2017) Synthesis of Diarylated 4-Pyridylmethyl Ethers via Palladium-Catalyzed Cross-Coupling Reactions. Adv Synth Catal 359:1927-1932
Li, Minyan; Berritt, Simon; Matuszewski, Lucas et al. (2017) Transition-Metal-Free Radical C(sp3)-C(sp2) and C(sp3)-C(sp3) Coupling Enabled by 2-Azaallyls as Super-Electron-Donors and Coupling-Partners. J Am Chem Soc 139:16327-16333
Zhang, Shuguang; Kim, Byeong-Seon; Wu, Chen et al. (2017) Palladium-catalysed synthesis of triaryl(heteroaryl)methanes. Nat Commun 8:14641
Yang, Xiaodong; Kim, Byeong-Seon; Li, Minyan et al. (2016) Palladium-Catalyzed Selective ?-Alkenylation of Pyridylmethyl Ethers with Vinyl Bromides. Org Lett 18:2371-4
Sha, Sheng-Chun; Jiang, Hui; Mao, Jianyou et al. (2016) Nickel-Catalyzed Allylic Alkylation with Diarylmethane Pronucleophiles: Reaction Development and Mechanistic Insights. Angew Chem Int Ed Engl 55:1070-4
Jiménez, Jacqueline; Kim, Byeong-Seon; Walsh, Patrick J (2016) Tandem C(sp3)-H Arylation/Oxidation and Arylation/Allylic Substitution of Isoindolinones. Adv Synth Catal 358:2829-2837
Rivero, Alexandra R; Kim, Byeong-Seon; Walsh, Patrick J (2016) Palladium-Catalyzed Benzylic Arylation of Pyridylmethyl Silyl Ethers: One-Pot Synthesis of Aryl(pyridyl)methanols. Org Lett 18:1590-3

Showing the most recent 10 out of 33 publications