Significance. Computational modeling is central to a rigorous understanding of the development of the child's first social relationships. The project will address this challenge by modeling longitudinal change in the dynamics of early social interactions. Modeling will integrate objective (automated) measurements of emotion and attention and common genetic variants relevant to those constructs. Innovation. Objective measurement of behavior will involve the automated modeling and classification of the physical properties of communicative signals-such as facial expressions and vocalizations. Dynamic models of self-regulation and interactive influence during dyadic interaction will utilize precise measurements of expressive behavior as moderated by genetic markers associated with dopaminergic and serotonergic functioning. The interdisciplinary team includes investigators including from developmental and quantitative psychology, genetics, affective computing, computer vision, and physics who model dynamic interactive processes at a variety of time scales. Approach. Infant-mother interaction, its perturbation, and its development, will be investigated using the Face-to-Face/Still-Face (FFSF) procedure at 2, 4, 6, and 8 months. Facial modeling, head, and arm/hand modeling will be used to conduct objective measurements of a multimodal suite of interactive behaviors including facial expression, gaze direction, head movement, tickling, and vocalization. Models will be trained and evaluated with respect to expert coding and non-experts'perceptions of emotional valence constructs. Dynamic approaches to time-series modeling will focus on the development of self-regulation and interactive influence. Inverse optimal control modeling will be used to infer infant and mother preferences for particular dyadic states given observed patterns of behavior. The context-dependence of these parameters will be assessed with respect to the perturbation introduced by the still-face (a brief period of investigator-requested adult non-responsivity). Individual differences in infant and mother behavioral parameters will be modeled with respect to genetic indices of infant and mother dopaminergic and serotonergic function. Modeling algorithms, measurement software, and coded recordings will be shared with the scientific community to catalyze progress in the understanding of behavioral systems. These efforts will increase understanding of pathways to healthy cognitive and socio-emotional development, and shed light on the potential for change that will inform early intervention efforts.

Public Health Relevance

The modeling of early infant-parent relationships is central to a rigorous quantitative understanding of social development. Objective measurements of communicative behavior and related genetic markers in infant and mother will be used to model the development of self- regulation and interactive influence as they develop longitudinally. Genetically informed modeling of the infant-mother interactive system will produce a rigorous understanding of parameters that describe the diversity of early developmental pathways and potential psychopathological deviations from those pathways.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Project (R01)
Project #
Application #
Study Section
Special Emphasis Panel (ZGM1-BBCB-9 (MS))
Program Officer
Marcus, Stephen
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Miami Coral Gables
Schools of Arts and Sciences
Coral Gables
United States
Zip Code
Jacobson, Nicholas C; Chow, Sy-Miin; Newman, Michelle G (2018) The Differential Time-Varying Effect Model (DTVEM): A tool for diagnosing and modeling time lags in intensive longitudinal data. Behav Res Methods :
Mattson, Whitney I; Messinger, Daniel S; Gangi, Devon N et al. (2018) A break in parental interaction does not affect the temporal dependency of infant social engagement, but disrupts non-social engagement. Sci Rep 8:15150
Martin, Katherine B; Hammal, Zakia; Ren, Gang et al. (2018) Objective measurement of head movement differences in children with and without autism spectrum disorder. Mol Autism 9:14
Morales, Santiago; Ram, Nilam; Buss, Kristin A et al. (2018) Age-related changes in the dynamics of fear-related regulation in early childhood. Dev Sci 21:e12633
Chow, Sy-Miin; Ou, Lu; Ciptadi, Arridhana et al. (2018) Representing Sudden Shifts in Intensive Dyadic Interaction Data Using Differential Equation Models with Regime Switching. Psychometrika 83:476-510
Girard, Jeffrey M; C Wright, Aidan G (2018) DARMA: Software for dual axis rating and media annotation. Behav Res Methods 50:902-909
Cole, Pamela M; BendezĂș, Jason J; Ram, Nilam et al. (2017) Dynamical systems modeling of early childhood self-regulation. Emotion 17:684-699
Chow, Sy-Miin; Hoijtink, Herbert (2017) Bayesian estimation and modeling: Editorial to the second special issue on Bayesian data analysis. Psychol Methods 22:609-615
Tang, Niansheng; Chow, Sy-Miin; Ibrahim, Joseph G et al. (2017) Bayesian Sensitivity Analysis of a Nonlinear Dynamic Factor Analysis Model with Nonparametric Prior and Possible Nonignorable Missingness. Psychometrika 82:875-903
Lu, Zhao-Hua; Chow, Sy-Miin; Loken, Eric (2017) A comparison of Bayesian and frequentist model selection methods for factor analysis models. Psychol Methods 22:361-381

Showing the most recent 10 out of 48 publications