Natural products have a major impact on drug discovery. They have contributed to approximately 50% of new chemical entities between 1940 and 2006, because they offer a unique richness in structural skeletons combined with a high degree of chirality that has the potential to selectively match bio-receptors. Natural products have been particularly useful for the treatment of cancer and infectious diseases, nonetheless new drugs are urgently needed because current drug regimens inevitably lose their effectiveness due to resistance mechanisms. Many important natural product drugs are generated by polyketide synthases (PKS, multiple enzyme complexes), and various frame-modifying reactions, called post-PKS tailoring steps. Type II PKSs assembling multicyclic aromatic intermediates together with the respective tailoring enzymes are responsible for the generation of important drugs, such as the clinically used tetracycline antibiotics, or anthracycline and aureolic acid anticancer drugs. While type II PKSs are well studied, the post-PKS steps are much less understood, although the frame modifying enzymes typically render an inert scaffold into a bioactive drug. The primary goal of this proposal is to functionally and mechanistically characterize uniquely reacting and organized frame modifying post-PKS enzymes involved in the biosynthesis of anticancer polyketide drugs of the angucycline and aureolic acid groups. It is our expectation that uncovering the molecular details of catalysis will help to evolve these critical enzymes, so that they can be exploited to modify type II PKS scaffolds. This could lead to novel, second-generation 'unnatural' natural products and/or derivatives of natural products via combinatorial biosynthesis, mutasynthesis, or chemo-enzymatic synthetic strategies. The studies also will help to generate new mithramycin and gilvocarcin analogues that will be useful to further study and steer the interactions of these drugs with their recently discovered specific targets.

Public Health Relevance

The proposed work aims to study key enzymes and enzyme complexes of the type II post-polyketide synthase (PKS) machinery found in the biosynthesis of natural product anticancer drugs, which are essential to turn primary polyketide scaffolds into bioactive drugs. Uncovering the molecular details of catalysis will help to evolve these critical enzymes, so that they can be exploited to modify primary PKS scaffolds. This could lead to novel, second-generation 'unnatural' natural products and/or derivatives of natural products via combinatorial biosynthesis, mutasynthesis, or chemo-enzymatic synthetic strategies. The studies also will help to generate new mithramycin and gilvocarcin analogues that will be useful to further study and steer the interactions of these drugs with their recently discovered specific targets.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM105977-02
Application #
8925099
Study Section
Synthetic and Biological Chemistry B Study Section (SBCB)
Program Officer
Gerratana, Barbara
Project Start
2014-09-10
Project End
2018-07-31
Budget Start
2015-08-01
Budget End
2016-07-31
Support Year
2
Fiscal Year
2015
Total Cost
Indirect Cost
Name
University of Kentucky
Department
Pharmacology
Type
Schools of Pharmacy
DUNS #
939017877
City
Lexington
State
KY
Country
United States
Zip Code
40506
Savi, Daiani C; Shaaban, Khaled A; Gos, Francielly Maria Wilke Ramos et al. (2018) Phaeophleospora vochysiae Savi & Glienke sp. nov. Isolated from Vochysia divergens Found in the Pantanal, Brazil, Produces Bioactive Secondary Metabolites. Sci Rep 8:3122
de Medeiros, Aliandra G; Savi, Daiani C; Mitra, Prithiba et al. (2018) Bioprospecting of Diaporthe terebinthifolii LGMF907 for antimicrobial compounds. Folia Microbiol (Praha) 63:499-505
Gao, Guixi; Liu, Xiangyang; Xu, Min et al. (2017) Formation of an Angular Aromatic Polyketide from a Linear Anthrene Precursor via Oxidative Rearrangement. Cell Chem Biol 24:881-891.e4
Goswami, Anwesha; Liu, Xiaodong; Cai, Wenlong et al. (2017) Evidence that oxidative dephosphorylation by the nonheme Fe(II), ?-ketoglutarate:UMP oxygenase occurs by stereospecific hydroxylation. FEBS Lett 591:468-478
Salem, Shaimaa M; Weidenbach, Stevi; Rohr, Jürgen (2017) Two Cooperative Glycosyltransferases Are Responsible for the Sugar Diversity of Saquayamycins Isolated from Streptomyces sp. KY 40-1. ACS Chem Biol 12:2529-2534
Panchuk, Rostyslav R; Lehka, Lilya V; Terenzi, Alessio et al. (2017) Rapid generation of hydrogen peroxide contributes to the complex cell death induction by the angucycline antibiotic landomycin E. Free Radic Biol Med 106:134-147
Wang, Guojun; Chen, Jing; Zhu, Haining et al. (2017) One-Pot Enzymatic Total Synthesis of Presteffimycinone, an Early Intermediate of the Anthracycline Antibiotic Steffimycin Biosynthesis. Org Lett 19:540-543
Pahari, Pallab; Saikia, Ujwal Pratim; Das, Trinath Prasad et al. (2016) Synthesis of Psoralidin derivatives and their anticancer activity: First synthesis of Lespeflorin I1. Tetrahedron 72:3324-3334
Jackson, David R; Yu, Xia; Wang, Guojung et al. (2016) Insights into Complex Oxidation during BE-7585A Biosynthesis: Structural Determination and Analysis of the Polyketide Monooxygenase BexE. ACS Chem Biol 11:1137-47
Blundell, Ross D; Williams, Simon J; Arras, Samantha D M et al. (2016) Disruption of de Novo Adenosine Triphosphate (ATP) Biosynthesis Abolishes Virulence in Cryptococcus neoformans. ACS Infect Dis 2:651-663

Showing the most recent 10 out of 18 publications