Interorganelle interactions are key processes controlling eukaryotic cell function, and dysregulation of these interactions has been implicated in many human diseases. However, relatively little is known about macromolecular complexes that mediate organelle interactions, due to obstacles that have been difficult to overcome. First, many relevant proteins are integral membrane proteins, which are hard to purify and maintain weak but physiologically important binding interactions. Capturing such interactions by conventional biochemical and genetic approaches is technically difficult. Second, simultaneously tracking transient organelle populations and interactions requires the ability to follow real time dynamics in living cells using multi-color fluorescent probes. However, many fluorescent proteins (FPs) used for live imaging are compromised by the oxidizing environment of many organelles, including ER, Golgi, and secretory vesicles. The goal of this proposal is to define protein complexes that define and modulate novel organelle subpopulations, using a combination of new technologies in mass spectrometry and fluorescent protein based probes for live cell imaging.
Our Specific Aims are: (1) Identify candidate protein markers of novel organelles and interorganellar protein complexes. We will develop a proteomics strategy to profile proteins within organelle subpopulations that are dynamic and transient, as well as macromolecular complexes that bridge organelles. (2) Develop novel biosensors to track these protein markers in living cells, by time resolved imaging and high resolution microscopy. We will maximize the available colors of the fluorescent protein spectrum for use in multi-color live cell imaging studies, by solving key problems in fluorescent protein reporters caused by organellar environments that restrict their folding and function. (3) Apply these methods to cutting edge problems in cell biology, addressing mechanisms underlying (i) ER stress and Ca2+-mediated organelle remodeling, (ii) Zn2+ homeostasis, and (iii) cell polarity. We will combine technologies developed in Aims 1 and 2 to create a new experimental workflow which integrates mass spectrometry/proteomics, biosensor design, and high resolution fluorescence microscopy, and apply this to relevant problems in collaborator labs in Aim 3. Our proposal establishes a unique, multidisciplinary collaboration between a team of four investigators, who are leading experts in technologies of proteomics/mass spectrometry, protein engineering and biosensor design, and cutting edge methods for high resolution cell imaging. The combined expertise from these investigators gives us a unique opportunity to discover novel organelles and macromolecular complexes involved in interorganelle contacts, and define their cell biology.

Public Health Relevance

The goal of this proposal is to define new membrane and protein complexes that define and modulate interactions between membrane bound compartments in cells (organelles). Eukaryotic cells have the distinguishing feature that distinct cellular functions and biochemical processes are compartmentalized into membrane-bound organelles, such as the endoplasmic reticulum (ER), the Golgi complex, and mitochondria. Studies are beginning to recognize that certain organelles form interactions with other organelles, and that these interactions underlie vital cellular functions. For example, the ER and mitochondria exchange calcium and perform different steps of phospholipid synthesis, and the ER also marks sites of mitochondrial division. Interorganelle communications can occur over close distances, along with direct interactions between the organelles. These processes are somehow critical for certain human diseases. For example, Charcot-Marie Tooth disease involves disruption of ER-mitochondrial interactions, and Niemann-Pick type C disease involves disruption of ER-late endosome interactions. Because the machineries responsible for organelle contacts are only now beginning to be identified, it is likely that organelle interactions will pla an increasingly important role in human disease. To study these problems, we will develop an innovative workflow that combines new technologies in mass spectrometry and fluorescent protein based probes for live cell imaging.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM105997-02
Application #
8683197
Study Section
Special Emphasis Panel (ZGM1-CBB-0 (MI))
Program Officer
Anderson, Vernon
Project Start
2013-07-01
Project End
2017-04-30
Budget Start
2014-05-01
Budget End
2015-04-30
Support Year
2
Fiscal Year
2014
Total Cost
$398,650
Indirect Cost
$68,250
Name
University of Colorado at Boulder
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
007431505
City
Boulder
State
CO
Country
United States
Zip Code
80309
Han, Yu; Goldberg, Jacob M; Lippard, Stephen J et al. (2018) Superiority of SpiroZin2 Versus FluoZin-3 for monitoring vesicular Zn2+ allows tracking of lysosomal Zn2+ pools. Sci Rep 8:15034
Redchuk, Taras A; Omelina, Evgeniya S; Chernov, Konstantin G et al. (2017) Near-infrared optogenetic pair for protein regulation and spectral multiplexing. Nat Chem Biol 13:633-639
Kaberniuk, Andrii A; Morano, Nicholas C; Verkhusha, Vladislav V et al. (2017) moxDendra2: an inert photoswitchable protein for oxidizing environments. Chem Commun (Camb) 53:2106-2109
Connacher, Mary Katherine; Tay, Jian Wei; Ahn, Natalie G (2017) Rear-polarized Wnt5a-receptor-actin-myosin-polarity (WRAMP) structures promote the speed and persistence of directional cell migration. Mol Biol Cell 28:1924-1936
Shcherbakova, Daria M; Baloban, Mikhail; Emelyanov, Alexander V et al. (2016) Bright monomeric near-infrared fluorescent proteins as tags and biosensors for multiscale imaging. Nat Commun 7:12405
Konold, Patrick E; Yoon, Eunjin; Lee, Junghwa et al. (2016) Fluorescence from Multiple Chromophore Hydrogen-Bonding States in the Far-Red Protein TagRFP675. J Phys Chem Lett 7:3046-51
Rumyantsev, Konstantin A; Turoverov, Konstantin K; Verkhusha, Vladislav V (2016) Near-infrared bioluminescent proteins for two-color multimodal imaging. Sci Rep 6:36588
Costantini, Lindsey M; Baloban, Mikhail; Markwardt, Michele L et al. (2015) A palette of fluorescent proteins optimized for diverse cellular environments. Nat Commun 6:7670
Costantini, Lindsey M; Irvin, Susan C; Kennedy, Steven C et al. (2015) Engineering and exploitation of a fluorescent HIV-1 gp120 for live cell CD4 binding assays. Virology 476:240-8
Rumyantsev, Konstantin A; Shcherbakova, Daria M; Zakharova, Natalia I et al. (2015) Minimal domain of bacterial phytochrome required for chromophore binding and fluorescence. Sci Rep 5:18348

Showing the most recent 10 out of 13 publications