Telomeres are specialized nucleoprotein structures located at the termini of linear eukaryotic chromosomes that are critical for genome stability. The lengths of telomere reserve often play a major role in dictating the replicative life span of cells. Many human diseases are now known to be caused by aberrations in proteins that regulate telomere synthesis. The two strands of telomeres, known as the G- and C-strand, are synthesized sequentially by telomerase and DNA polymerase ?, respectively. Telomerase mediates the extension of the G-strand through reverse transcription of an integral RNA template component. The newly synthesized G-strand in turn serves as the template for the synthesis of the C-strand by the Pol ? complex. A key regulator of telomere DNA synthesis is the Cdc13-Stn1-Ten1 (CST) complex, a conserved RPA-like complex that binds the telomere G-strand with high affinity and sequence-specificty, and that regulates both telomerase and Pol ?. The goal of this research is to understand the mechanisms of the telomerase, Pol ?, and CST complex with respect to the regulation of telomere G and C-strand synthesis. We will utilize factors derived from several Candida species as models. These versions of the three complexes are particularly amenable to biochemical analyses, allowing us to reconstitute several critical interactions that were difficlt to analyze in other systems. Studies of these biochemically tractable factors have led to a series of new and well-defined hypotheses concerning their mechanisms of action. These hypotheses will be tested through an integrated approach that incorporates biochemical, genetic, and single-molecule FRET techniques.
The first aim i s to dissect the nucleic acid-binding mechanisms of the Est3-TEN complex (comprised of two critical and conserved domains in the telomerase holoenzyme) and assess their contribution to telomerase activity and processivity in vitro and in vivo.
The second aim i s to dissect the mechanisms of C-strand synthesis by Pol ?, especially with respect to initiation site selection and primer length regulation.
The third aim i s to characterize the physical interactions between the CST complex and Pol ?, and define the mechanisms by which CST stimulates telomere C-strand synthesis in vitro and in vivo. The targets of these investigations are conserved between budding yeast and humans. The anticipated outcome is a deeper understanding of mechanisms that regulate telomere DNA synthesis, which should inform the development of telomere-based clinical applications.

Public Health Relevance

There is now strong and compelling evidence that aberrations in telomeres and telomerase are major contributing factors to the development of cancers as well as bone marrow failures and pulmonary/liver fibrosis. Therefore, strategies for manipulating telomere lengths and structures are expected to find applications in multiple clinical settings. This research will offer greater understanding of the mechanisms of telomere DNA synthesis, which will in turn catalyze the development of new diagnostics and therapies for telomere-related disorders.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM107287-04
Application #
9278233
Study Section
Molecular Genetics A Study Section (MGA)
Program Officer
Carter, Anthony D
Project Start
2014-08-11
Project End
2018-05-31
Budget Start
2017-06-01
Budget End
2018-05-31
Support Year
4
Fiscal Year
2017
Total Cost
$292,225
Indirect Cost
$109,916
Name
Weill Medical College of Cornell University
Department
Microbiology/Immun/Virology
Type
Schools of Medicine
DUNS #
060217502
City
New York
State
NY
Country
United States
Zip Code
10065
Hsu, Min; Lue, Neal F (2018) The mechanisms of K. lactis Cdc13 in telomere DNA-binding and telomerase regulation. DNA Repair (Amst) 61:37-45
Shastry, Shankar; Steinberg-Neifach, Olga; Lue, Neal et al. (2018) Direct observation of nucleic acid binding dynamics by the telomerase essential N-terminal domain. Nucleic Acids Res 46:3088-3102
Ganduri, Swapna; Lue, Neal F (2017) STN1-POLA2 interaction provides a basis for primase-pol ? stimulation by human STN1. Nucleic Acids Res 45:9455-9466
Hsu, Min; Lue, Neal F (2017) Analysis of Yeast Telomerase by Primer Extension Assays. Methods Mol Biol 1587:83-93
Lue, Neal F; Yu, Eun Young (2017) Telomere recombination pathways: tales of several unhappy marriages. Curr Genet 63:401-409
Steinberg-Neifach, Olga; Wellington, Kemar; Vazquez, Leslie et al. (2015) Combinatorial recognition of a complex telomere repeat sequence by the Candida parapsilosis Cdc13AB heterodimer. Nucleic Acids Res 43:2164-76
Steinberg-Neifach, Olga; Lue, Neal F (2015) Telomere DNA recognition in Saccharomycotina yeast: potential lessons for the co-evolution of ssDNA and dsDNA-binding proteins and their target sites. Front Genet 6:162
Lue, Neal F; Chan, Jamie; Wright, Woodring E et al. (2014) The CDC13-STN1-TEN1 complex stimulates Pol ? activity by promoting RNA priming and primase-to-polymerase switch. Nat Commun 5:5762