Each year, Mycobacterium tuberculosis (Mtb) infection causes 1.8 million deaths worldwide. The inadequacies of present tuberculosis (TB) therapies demand the discovery of new agents to treat Mtb infection. In prior work, we have identified CarD as a transcriptional regulator that is necessary for Mtb pathogenesis, contributes to rifampicin resistance, regulates ribosomal RNA (rRNA) levels, and is not present in eukaryotes. CarD is thus an attractive drug target, but knowledge of the molecular details of CarD function is required to develop specific inhibitors of CarD activity. We hypothesize that since CarD is required for regulating transcription, then its structural domains perform specific functions during transcription and their activity can be inhibited to compromise these processes. We will utilize an innovative single-molecule approach to monitor transcription by mycobacterial RNA polymerase (RNAP) from mycobacterial rRNA promoters in real time and determine how CarD modulates each individual phase of transcription. Specifically, the following aims will address the mechanism of CarD at the molecular, biochemical, and biophysical levels to gain insight into Mtb pathogenesis and to expand paradigms of prokaryotic transcription.
Aim 1. Elucidate the mechanism of action of CarD at rRNA promoters. We will use single molecule techniques to quantitatively determine the effect of CarD on different stages of transcription and learn how CarD affects transcription kinetics.
Aim 2. Determine the effect of CarD on rifampicin sensitivity of RNAP. We will measure the effect of CarD on the detailed kinetics of transcription initiation and abortive transcription in the presence of rifampicin.
Aim 3. Investigate the role o CarD macromolecular interactions during transcription regulation. Using point mutations in CarD, we will determine how disruptions in the macromolecular interactions between CarD, RNAP, and the promoter affect CarD regulation of transcription and rifampicin resistance. The outcome of this work will be a detailed mechanism of CarD activity, which will provide answers to fundamental questions regarding transcription regulation in mycobacteria. Our investigations will generate insight into the essential activity of CarD that may then be targeted in new chemotherapeutic strategies to treat TB. Notably, CarD is conserved in many other bacteria, indicating that our findings will apply to diverse bacterial pathogens. Thus, the proposed research will advance the mission of the National Institutes of Health to gain fundamental knowledge to decrease the burden of infectious disease on human health.

Public Health Relevance

The World Health Organization reported 9 million new cases of Tuberculosis (TB) in 2010, contributing to the 2 billion people infected with Mycobacterium tuberculosis worldwide and 1.4 million TB related deaths that year. This urgent health crisis is exacerbated by the alarming emergence of multiple drug resistant and extremely drug resistant strains. The experiments proposed will provide critical insight into the pathways required for M. tuberculosis pathogenesis to aid in the development of novel therapies of mycobacterial disease.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM107544-02
Application #
8695415
Study Section
Prokaryotic Cell and Molecular Biology Study Section (PCMB)
Program Officer
Sledjeski, Darren D
Project Start
2013-07-08
Project End
2018-06-30
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
2
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Washington University
Department
Microbiology/Immun/Virology
Type
Schools of Medicine
DUNS #
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Galburt, Eric A (2018) The calculation of transcript flux ratios reveals single regulatory mechanisms capable of activation and repression. Proc Natl Acad Sci U S A 115:E11604-E11613
Galburt, Eric A; Tomko, Eric J (2017) Conformational selection and induced fit as a useful framework for molecular motor mechanisms. Biophys Chem 223:11-16
Garner, Ashley L; Rammohan, Jayan; Huynh, Jeremy P et al. (2017) Effects of Increasing the Affinity of CarD for RNA Polymerase on Mycobacterium tuberculosis Growth, rRNA Transcription, and Virulence. J Bacteriol 199:
Rammohan, Jayan; Ruiz Manzano, Ana; Garner, Ashley L et al. (2016) Cooperative stabilization of Mycobacterium tuberculosis rrnAP3 promoter open complexes by RbpA and CarD. Nucleic Acids Res 44:7304-13
Flentie, Kelly; Garner, Ashley L; Stallings, Christina L (2016) Mycobacterium tuberculosis Transcription Machinery: Ready To Respond to Host Attacks. J Bacteriol 198:1360-73
Galburt, Eric A; Rammohan, Jayan (2016) A Kinetic Signature for Parallel Pathways: Conformational Selection and Induced Fit. Links and Disconnects between Observed Relaxation Rates and Fractional Equilibrium Flux under Pseudo-First-Order Conditions. Biochemistry 55:7014-7022
Rammohan, Jayan; Ruiz Manzano, Ana; Garner, Ashley L et al. (2015) CarD stabilizes mycobacterial open complexes via a two-tiered kinetic mechanism. Nucleic Acids Res 43:3272-85
Landick, Robert; Krek, Azra; Glickman, Michael S et al. (2014) Genome-Wide Mapping of the Distribution of CarD, RNAP ?(A), and RNAP ? on the Mycobacterium smegmatis Chromosome using Chromatin Immunoprecipitation Sequencing. Genom Data 2:110-113
Garner, Ashley L; Weiss, Leslie A; Manzano, Ana Ruiz et al. (2014) CarD integrates three functional modules to promote efficient transcription, antibiotic tolerance, and pathogenesis in mycobacteria. Mol Microbiol 93:682-97
Srivastava, Devendra B; Leon, Katherine; Osmundson, Joseph et al. (2013) Structure and function of CarD, an essential mycobacterial transcription factor. Proc Natl Acad Sci U S A 110:12619-24