Key to the process of pharmaceutical lead compound discovery from natural sources is the effective access and characterization of highly diverse molecular structures. In this regard, exploration of the marine environment for bioactive natural products is revealing new vistas in natural products chemical diversity. In this application we propose the development of innovative technologies and knowledge, principally based on LC-MS/MS data and 'molecular mapping', which will improve the effectiveness of natural products drug discovery efforts. This will enable a much improved capacity to discover new molecular diversity or analogs in desired structure classes. We will develop an understanding of the degree of expression of natural product pathways in cultured strains, and will develop novel methods by which to upregulate low or non-expressing biosynthetic gene clusters. As a result of these studies, new marine cyanobacterial natural products will be discovered and their biomedical properties will be characterized. To accomplish these goals we have the following four specific aims: 1) To use LC-MS/MS profiling of cyanobacterial extracts and pure compounds, followed by molecular mapping, to create a representation of the chemical universe of our samples. 2) To use QPCR and genome sequencing technologies to evaluate the degree of expression of natural product pathways in our cultured marine cyanobacteria, and to connect Natural Product Super-producing strains of cyanobacteria with their genotypes. This latter information can be used to find genetic markers that can be rapidly deployed to locate this phenotype in new cyanobacterial cultures and collections. 3) To use a suite of imaginative methods to transcriptionally activate cryptic natural product biosynthetic gene clusters in strains determined in Aim 2 to possess un-expressed natural products capacity, and to analyze the resulting elicited secondary metabolomes by mass spectrometry and molecular mapping. 4) To isolate members of new families of compounds detected in Aims 1, as well as newly expressed natural products from Aim 3, and rigorously establish molecular structures using advanced analytical methods. Through the course of these four specific aims, this collaborative group will explore a number of innovative methods and approaches in the natural products sciences, including MS/MS molecular mapping, genomic analysis of natural products expression, elicitation of new natural products expression, connection of natural product-rich phenotypes to their corresponding genotypes, imaging mass spectrometry of complex consortiums of species wherein natural product pathways are activated, and novel automated MS approaches to natural products characterization. All of these methods are focused on improving the detection and characterization of the molecular diversity present in microorganisms, in this case, marine cyanobacteria. This molecular diversity continues to be an important source of inspirational molecules for biomedical research and drug discovery.

Public Health Relevance

Natural products continue to be very important sources of new drug leads as well as research biochemicals. The quality and success of these efforts depends on the effective access to the enormous chemical diversity present in the natural world. This application proposes the development of several innovative new methods and approaches in the natural products sciences, such as characterizing the universe of cyanobacterial secondary metabolites using molecular maps created from mass spectrometric data. These advances will improve the effectiveness of natural products drug discovery investigations in diverse therapeutic areas.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
4R01GM107550-04
Application #
9066743
Study Section
Synthetic and Biological Chemistry B Study Section (SBCB)
Program Officer
Gerratana, Barbara
Project Start
2013-09-05
Project End
2017-05-31
Budget Start
2016-06-01
Budget End
2017-05-31
Support Year
4
Fiscal Year
2016
Total Cost
Indirect Cost
Name
University of California San Diego
Department
Zoology
Type
Earth Sciences/Resources
DUNS #
804355790
City
La Jolla
State
CA
Country
United States
Zip Code
92093
Leao, Tiago; Castelão, Guilherme; Korobeynikov, Anton et al. (2017) Comparative genomics uncovers the prolific and distinctive metabolic potential of the cyanobacterial genus Moorea. Proc Natl Acad Sci U S A 114:3198-3203
Sabry, Omar M; Goeger, Douglas E; Gerwick, William H (2017) Biologically active new metabolites from a Florida collection of Moorea producens. Nat Prod Res 31:555-561
LaMonte, Gregory M; Almaliti, Jehad; Bibo-Verdugo, Betsaida et al. (2017) Development of a Potent Inhibitor of the Plasmodium Proteasome with Reduced Mammalian Toxicity. J Med Chem 60:6721-6732
Kinnel, Robin B; Esquenazi, Eduardo; Leao, Tiago et al. (2017) A Maldiisotopic Approach to Discover Natural Products: Cryptomaldamide, a Hybrid Tripeptide from the Marine Cyanobacterium Moorea producens. J Nat Prod 80:1514-1521
Luzzatto-Knaan, Tal; Garg, Neha; Wang, Mingxun et al. (2017) Digitizing mass spectrometry data to explore the chemical diversity and distribution of marine cyanobacteria and algae. Elife 6:
Naman, C Benjamin; Rattan, Ramandeep; Nikoulina, Svetlana E et al. (2017) Integrating Molecular Networking and Biological Assays To Target the Isolation of a Cytotoxic Cyclic Octapeptide, Samoamide A, from an American Samoan Marine Cyanobacterium. J Nat Prod 80:625-633
Zhang, Chen; Idelbayev, Yerlan; Roberts, Nicholas et al. (2017) Small Molecule Accurate Recognition Technology (SMART) to Enhance Natural Products Research. Sci Rep 7:14243
Pye, Cameron R; Bertin, Matthew J; Lokey, R Scott et al. (2017) Retrospective analysis of natural products provides insights for future discovery trends. Proc Natl Acad Sci U S A 114:5601-5606
Zhang, Chen; Naman, C Benjamin; Engene, Niclas et al. (2017) Laucysteinamide A, a Hybrid PKS/NRPS Metabolite from a Saipan Cyanobacterium, cf. Caldora penicillata. Mar Drugs 15:
Cummings, Susie L; Barbé, Debby; Leao, Tiago Ferreira et al. (2016) A novel uncultured heterotrophic bacterial associate of the cyanobacterium Moorea producens JHB. BMC Microbiol 16:198

Showing the most recent 10 out of 22 publications