Combinatorial regulation of gene expression by multiple transcription factors (TFs) is a fundamental mechanism for regulating gene expression. Although this phenomenon has been studied for several decades, we still lack a systematic strategy to accurately identify combinatorial TF interactions at enhancers and to model their regulatory output on target gene(s), especially for mammalian species. If successful, the proposed research will remove a bottleneck in the field and represent the first step in a continuum of research that is expected to further our understanding of gene regulation. Research proposed in this application is innovative, in our opinion, because it represents a new and substantive departure from the status quo. We will address the following three challenges facing researchers in the field: 1) lack of strategies to identify combinatorial interactions among TFs at enhancers; 2) lack of strategies to associate enhancers with their target genes; and 3) limited ability to translate enhancer sequence information to its regulatory output. At the completion of this project, we expect to have developed a set of computational methods that enable genome-scale identification of combinatorial interactions at enhancers and construction of predictive models of combinatorial regulation in mammals. In addition, by applying our methods to large public datasets, we expect to obtain new insights into the evolutionary, spatial, and temporal dynamics of enhancers. The computational methods developed will be implemented as open-source software and made publicly available to the research community.

Public Health Relevance

Many human diseases are caused by dysregulated gene expression. Combinatorial action by multiple transcription factors is critical to gene regulation. better understanding of this regulatory mechanism is essential for understanding and treatment of human diseases.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM108716-05
Application #
9260006
Study Section
Biodata Management and Analysis Study Section (BDMA)
Program Officer
Ravichandran, Veerasamy
Project Start
2014-06-15
Project End
2018-03-31
Budget Start
2017-04-01
Budget End
2018-03-31
Support Year
5
Fiscal Year
2017
Total Cost
$293,525
Indirect Cost
$118,808
Name
Children's Hospital of Philadelphia
Department
Type
Independent Hospitals
DUNS #
073757627
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Tober, Joanna; Maijenburg, Marijke M W; Li, Yan et al. (2018) Maturation of hematopoietic stem cells from prehematopoietic stem cells is accompanied by up-regulation of PD-L1. J Exp Med 215:645-659
Gao, Long; Uzun, Yasin; Gao, Peng et al. (2018) Identifying noncoding risk variants using disease-relevant gene regulatory networks. Nat Commun 9:702
Li, Yan; Gao, Long; Hadland, Brandon et al. (2017) CD27 marks murine embryonic hematopoietic stem cells and type II prehematopoietic stem cells. Blood 130:372-376
Li, Fengyin; He, Bing; Ma, Xiaoke et al. (2017) Prostaglandin E1 and Its Analog Misoprostol Inhibit Human CML Stem Cell Self-Renewal via EP4 Receptor Activation and Repression of AP-1. Cell Stem Cell 21:359-373.e5
Yu, Wenbao; He, Bing; Tan, Kai (2017) Identifying topologically associating domains and subdomains by Gaussian Mixture model And Proportion test. Nat Commun 8:535
He, Bing; Xing, Shaojun; Chen, Changya et al. (2016) CD8+ T Cells Utilize Highly Dynamic Enhancer Repertoires and Regulatory Circuitry in Response to Infections. Immunity 45:1341-1354
Gao, Tianshun; He, Bing; Liu, Sheng et al. (2016) EnhancerAtlas: a resource for enhancer annotation and analysis in 105 human cell/tissue types. Bioinformatics 32:3543-3551
He, Bing; Tan, Kai (2016) Understanding transcriptional regulatory networks using computational models. Curr Opin Genet Dev 37:101-108
Guo, Yu; Alexander, Katherine; Clark, Andrew G et al. (2016) Integrated network analysis reveals distinct regulatory roles of transcription factors and microRNAs. RNA 22:1663-1672
Huang, Jianfei; Wang, Kai; Wei, Peng et al. (2016) FLAGS: A Flexible and Adaptive Association Test for Gene Sets Using Summary Statistics. Genetics 202:919-29

Showing the most recent 10 out of 18 publications