Structural systems biology - the combination of system biology with structural biology, has emerged as a powerful tool for understanding complex systems significant for human health. DNA replication and repair are essential life processes critical for genome integrity. While structures of many individual replication proteins have been solved, larger replisomal assemblies still present challenges for conventional structural methods. Thus, an excellent opportunity exists to apply structural systems biology approaches to characterize dynamic replication complexes. The proposal is focused on the assemblies of the core replication protein DNA ligase I (Lig1) with partners Flap Endonuclease 1 (FEN1), Proliferating Cell Nuclear Antigen (PCNA) and Rad9-Hus1- Rad1 (9-1-1) on DNA. We will delineate the mechanisms for coordinated enzyme exchange on PCNA (9-1-1), important for genome duplication and maintenance. To define inherently dynamic complexes, we combine advanced computational methods with structural techniques that can collect data on flexible macromolecular systems - small angle X-ray scattering (SAXS), electron microscopy (EM) and single-molecule Frster Resonance Energy Transfer (smFRET). Known high-resolution structures of constituents in these complexes will be integrated with SAXS, EM, smFRET and biochemical data to yield information on the larger assemblies through hybrid computational protocols we are developing. Such close interplay of computation and experiment is needed for analysis of dynamic assemblies. Our experimental work is stronger with molecular- level models to interpret the data; and our computational work will benefit from diverse experimental techniques to restrain and cross-validate the models.
In Aim1 we will delineate how Lig1 recognizes substrate DNA.
In Aim2 we will unravel the origins of Lig1/DNA stabilization by PCNA/9-1-1 and model ternary Lig1/clamp/DNA complexes.
In Aim3 we will synthesize diverse structural information to discover the controlling elements for coordinated handoff of DNA between FEN1 and Lig1. Our strategy is to address these key mechanistic questions relevant to cancer etiology and interventions, through synergistic biochemical, structural and hybrid modeling methods. The results will clarify mechanisms whereby loss of function of these coordinated replication complexes may lead to inheritable genetic diseases or cancer susceptibility.

Public Health Relevance

DNA replication is a major target for cancer therapies, while efficient repair antagonizes those same therapies. Both replication and repair are critically dependent on the dynamics, coordinated access, and conformational switching of key proteins in these processes. We will model and structurally characterize dynamic assemblies of these proteins to elucidate their roles in coordinating replication and repair activities. Success of thi research will have impact on fundamental understanding of cancer etiology.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM110387-03
Application #
9332190
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Flicker, Paula F
Project Start
2015-09-01
Project End
2020-08-31
Budget Start
2017-09-01
Budget End
2018-08-31
Support Year
3
Fiscal Year
2017
Total Cost
Indirect Cost
Name
Georgia State University
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
837322494
City
Atlanta
State
GA
Country
United States
Zip Code
30302
Dodd, Thomas; Yan, Chunli; Kossmann, Bradley R et al. (2018) Uncovering universal rules governing the selectivity of the archetypal DNA glycosylase TDG. Proc Natl Acad Sci U S A 115:5974-5979
Wang, Jing L; Duboc, Camille; Wu, Qian et al. (2018) Dissection of DNA double-strand-break repair using novel single-molecule forceps. Nat Struct Mol Biol 25:482-487
Ogorzalek, Tadeusz L; Hura, Greg L; Belsom, Adam et al. (2018) Small angle X-ray scattering and cross-linking for data assisted protein structure prediction in CASP 12 with prospects for improved accuracy. Proteins 86 Suppl 1:202-214
Li, Jing; Li, Shanshan; Guo, Jianshuang et al. (2018) Natural Product Micheliolide (MCL) Irreversibly Activates Pyruvate Kinase M2 and Suppresses Leukemia. J Med Chem 61:4155-4164
Han, Yan; Yan, Chunli; Fishbain, Susan et al. (2018) Structural visualization of RNA polymerase III transcription machineries. Cell Discov 4:40
Zhang, Jing; Qian, Kun; Yan, Chunli et al. (2017) Discovery of Decamidine as a New and Potent PRMT1 Inhibitor. Medchemcomm 8:440-444
Han, Yan; Yan, Chunli; Nguyen, Thi Hoang Duong et al. (2017) Structural mechanism of ATP-independent transcription initiation by RNA polymerase I. Elife 6:
Tsutakawa, Susan E; Thompson, Mark J; Arvai, Andrew S et al. (2017) Phosphate steering by Flap Endonuclease 1 promotes 5'-flap specificity and incision to prevent genome instability. Nat Commun 8:15855
Rashid, Fahad; Harris, Paul D; Zaher, Manal S et al. (2017) Single-molecule FRET unveils induced-fit mechanism for substrate selectivity in flap endonuclease 1. Elife 6:
Turaga, Ravi Chakra; Yin, Lu; Yang, Jenny J et al. (2016) Rational design of a protein that binds integrin ?v?3 outside the ligand binding site. Nat Commun 7:11675

Showing the most recent 10 out of 16 publications