mRNA degradation affects virtually all cellular activities by limiting the number of times each mRNA can be translated into protein molecules. By affecting protein synthesis, mRNA degradation allows organisms to adapt to changing environmental conditions and is therefore particularly important in enabling pathogenic bacteria to invade and survive in host cells. mRNA degradation in E. coli and many other bacteria involves a decay pathway triggered by modification of the 5 end of the mRNA transcript by RppH and other enzymes. A better understanding of this pathway could enable the development of new strategies to impede bacterial invasion and survival in hosts. A recently discovered 5-end modification of E. coli mRNAs is nucleoside tetraphosphate (Np4) caps, originated from stress-induced ?alarmones?, such as Ap4A, present in all domains of life. Despite the identification of capping and decapping enzymes in E. coli, practically nothing is known about mechanisms of cap addition and removal. This proposal details a research plan to elucidate the mechanisms of Np4 capping and decapping and the connection between cellular metabolism and RNA degradation in E. coli.
Aim 1 addresses how the RNA polymerase adds Np4A cap precursor to mRNA molecules by using cryogenic electron microscopy, X-ray crystallography, and biochemical experiments to reveal the mechanism and specificity of incorporation.
Aim 2 will uncover how the Np4 cap is removed by RppH, using X-ray crystallography and biochemistry to understand the specificity and the catalytic mechanisms of decapping.
Aim 3 elucidates the molecular basis of Np4 cap removal by ApaH, using X-ray crystallography and biochemistry to understand the catalytic mechanism and RNA binding rules of this enzyme.
Aim 4 reveals a relationship between cellular metabolism and mRNA degradation.
This aim uses structure-based genetic uncoupling to identify how the metabolic enzyme DapF affects RNA degradation under various growth conditions. The results of these studies will significantly advance our knowledge of the steps leading to 5-end-dependent mRNA degradation and how modulation of this pathway affects the viability of bacteria.

Public Health Relevance

mRNA degradation is a fundamental cellular process that impacts the well-being of organisms in changing environmental conditions through direct effects on protein biosynthesis. We propose to characterize a novel 5?-end RNA modification, a cap, that has impact on the stability of mRNA. These studies will provide insights into the molecular details of mRNA capping and decapping and the molecular mechanisms at the foundation of regulatory networks that affect the adaptability and virulence of pathogenic bacteria.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Project (R01)
Project #
Application #
Study Section
Macromolecular Structure and Function B Study Section (MSFB)
Program Officer
Carter, Anthony D
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
New York University
Schools of Medicine
New York
United States
Zip Code
Peselis, Alla; Serganov, Alexander (2018) ykkC riboswitches employ an add-on helix to adjust specificity for polyanionic ligands. Nat Chem Biol 14:887-894
Luciano, Daniel J; Vasilyev, Nikita; Richards, Jamie et al. (2018) Importance of a diphosphorylated intermediate for RppH-dependent RNA degradation. RNA Biol 15:703-706
Gao, Ang; Vasilyev, Nikita; Luciano, Daniel J et al. (2018) Structural and kinetic insights into stimulation of RppH-dependent RNA degradation by the metabolic enzyme DapF. Nucleic Acids Res 46:6841-6856
Bischler, Thorsten; Hsieh, Ping-Kun; Resch, Marcus et al. (2017) Identification of the RNA Pyrophosphohydrolase RppH of Helicobacter pylori and Global Analysis of Its RNA Targets. J Biol Chem 292:1934-1950
Luciano, Daniel J; Vasilyev, Nikita; Richards, Jamie et al. (2017) A Novel RNA Phosphorylation State Enables 5' End-Dependent Degradation in Escherichia coli. Mol Cell 67:44-54.e6
Vasilyev, Nikita; Serganov, Alexander (2016) Preparation of Short 5'-Triphosphorylated Oligoribonucleotides for Crystallographic and Biochemical Studies. Methods Mol Biol 1320:11-20
Ren, Aiming; Xue, Yi; Peselis, Alla et al. (2015) Structural and Dynamic Basis for Low-Affinity, High-Selectivity Binding of L-Glutamine by the Glutamine Riboswitch. Cell Rep 13:1800-13