Abstract: The rapid evolution of the field of biophotonics has produced numerous emerging techniques for combatting diseases and addressing urgent human health challenges, offering safe, non-invasive, and portable light-based diagnostic and therapeutic methods, and attracting exponentially growing attention over the past decade. Rigorous, fast, versatile and publicly available computational tools have played pivotal roles in the success of these novel approaches, leading to breakthroughs in new instrumentation designs and extensive explorations of complex biological systems such as human brains. The Monte Carlo eXtreme (MCX, http://mcx.space) light transport simulation platform developed by our team has become one of the most widely disseminated biophotonics modeling platforms, known for its high accuracy, high speed and versatility, as attested to by its over 27,000 downloads and nearly 1,000 citations from a large (2,400+ registered users) world-wide user community. Over the past years, we have also been pushing the boundaries in cutting-edge Monte Carlo (MC) photon simulation algorithms by exploring modern GPU architectures, advanced anatomical modeling methods and systematic software optimizations. In this proposed project, we will build upon the strong momentum created in the initial funding period, and strive to further advance the state-of-the-art of GPU-accelerated MC light transport modeling with strong support from the world?s leading GPU manufacturers and experts, further expanding our platform to address a number of emerging challenges in biomedical optics applications. Specifically, we will further explore emerging GPU architecture and resources, such as ray- tracing cores, half- and mixed-precision hardware, and portable programming models, to further accelerate the MC modeling speed. We will also develop hybrid shape/mesh-based MC algorithms to dramatically advance the capability in simulating extremely complex yet realistic anatomical structures, such as porous tissues in the lung, dense vessel networks in the brain, and multi-scaled tissue domains. In parallel, we aim to make a break- through in applying deep-learning-based image denoising techniques to equivalently accelerate MC simulations by 2 to 3 orders of magnitudes, as suggested in our preliminary studies. In the continuation of this project, we strive to create a dynamic and community-engaging simulation environment by extending our software to allow users to create, share, browse, and reuse pre-configured simulations, avoiding redundant works in re-creating complex simulations and facilitating reproducible research. In addition, we will expand our well-received user training programs and widely disseminate our open-source tools via major Linux distributions and container images. At the end of this continued funding period, we will provide the community with a significantly accelerated, widely-available and well-supported biophotonics modeling platform that can handle multi-scaled tissue optical modeling ranging from microscopic to macroscopic domains.

Public Health Relevance

The Monte Carlo eXtreme (MCX) light transport modeling platform has quadrupled its user community and paper citation numbers during the initial funding period. Building upon this strong momentum, we aim to further explore computational acceleration enabled by emerging GPU architectures and resources, and spearhead novel Monte Carlo (MC) algorithms to address the emerging needs of a broad biophotonics research community. We also dedicate our efforts to the further dissemination, training and usability enhancement of our software, and provide timely support to our large (>2,400 registered users) and active (>300 mailing list subscribers) user community.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
2R01GM114365-06
Application #
10052188
Study Section
Biodata Management and Analysis Study Section (BDMA)
Program Officer
Brazhnik, Paul
Project Start
2015-05-01
Project End
2024-04-30
Budget Start
2020-08-05
Budget End
2021-04-30
Support Year
6
Fiscal Year
2020
Total Cost
Indirect Cost
Name
Northeastern University
Department
Engineering (All Types)
Type
Biomed Engr/Col Engr/Engr Sta
DUNS #
001423631
City
Boston
State
MA
Country
United States
Zip Code
02115
Yu, Leiming; Nina-Paravecino, Fanny; Kaeli, David et al. (2018) Scalable and massively parallel Monte Carlo photon transport simulations for heterogeneous computing platforms. J Biomed Opt 23:1-4
Draghici, Adina E; Potart, Diane; Hollmann, Joseph L et al. (2018) Near infrared spectroscopy for measuring changes in bone hemoglobin content after exercise in individuals with spinal cord injury. J Orthop Res 36:183-191
Horn, Andreas; Reich, Martin; Vorwerk, Johannes et al. (2017) Connectivity Predicts deep brain stimulation outcome in Parkinson disease. Ann Neurol 82:67-78
Verleker, Akshay Prabhu; Shaffer, Michael; Fang, Qianqian et al. (2017) Optical dosimetry probes to validate Monte Carlo and empirical-method-based NIR dose planning in the brain: publisher's note. Appl Opt 56:1131
Yao, Ruoyang; Intes, Xavier; Fang, Qianqian (2016) Generalized mesh-based Monte Carlo for wide-field illumination and detection via mesh retessellation. Biomed Opt Express 7:171-84
Deng, Bin; Brooks, Dana H; Boas, David A et al. (2015) Characterization of structural-prior guided optical tomography using realistic breast models derived from dual-energy x-ray mammography. Biomed Opt Express 6:2366-79