The preparation of pharmaceutical agents used to treat human disease is enabled by advances in catalytic science. This project has the long-term goal of developing a broad class of inexpensive nonmetal catalysts that promote atom transfer and bond activation processes via formal oxidation state cycling in much the same way that late transition metal catalysts operate. Within this overarching goal, the primary focus of this proposal is the design and evaluation of phosphorus-based catalysts that function in the PIII?PV redox couple. While phosphines are well-established in catalysis as spectator ligands for transition metal catalysis and as nucleophilic catalysts, this research will investigate phosphorus-based catalysts of novel composition and structure that explore the structural and electronic conditions required to enable new catalytically-relevant reactivity via reversible PII?PV oxidation state cycling. The first major effort is the development of phosphine-catalyzed O-atom transfer methods that result in reductive difunctionalization of carbonyl compounds. The second major effort is the development of amine functionalization reactions that are initiated by phosphorus-mediated bond activation. The proposed research is expected to yield new practical catalytic methods for the construction of pharmacologically-relevant small molecules that meet the challenges of sustainable synthesis, and an improved fundamental understanding the interplay between structure and reactivity in the p-block that will underpin future development of nonmetals for atom transfer, bond activation, and catalysis. Taken together, these outcomes will advance a new and powerful modality in nonmetal-based catalysis.

Public Health Relevance

Innovative homogeneous catalytic methods play an increasingly important role in chemical synthesis of pharmaceuticals. This proposal outlines a new reactions based on nonmetal phosphorus-based catalysts that strengthen our ability to access classes of molecules relevant to human health.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM114547-04
Application #
9253412
Study Section
Synthetic and Biological Chemistry B Study Section (SBCB)
Program Officer
Lees, Robert G
Project Start
2015-03-01
Project End
2020-02-29
Budget Start
2017-03-01
Budget End
2018-02-28
Support Year
4
Fiscal Year
2017
Total Cost
$210,325
Indirect Cost
$66,325
Name
Massachusetts Institute of Technology
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
001425594
City
Cambridge
State
MA
Country
United States
Zip Code
02142
Nykaza, Trevor V; Ramirez, Antonio; Harrison, Tyler S et al. (2018) Biphilic Organophosphorus-Catalyzed Intramolecular Csp2-H Amination: Evidence for a Nitrenoid in Catalytic Cadogan Cyclizations. J Am Chem Soc 140:3103-3113
Tanushi, Akira; Radosevich, Alexander T (2018) Insertion of a Nontrigonal Phosphorus Ligand into a Transition Metal-Hydride: Direct Access to a Metallohydrophosphorane. J Am Chem Soc 140:8114-8118
Nykaza, Trevor V; Cooper, Julian C; Li, Gen et al. (2018) Intermolecular Reductive C-N Cross Coupling of Nitroarenes and Boronic Acids by PIII/PV?O Catalysis. J Am Chem Soc 140:15200-15205
Lin, Yi-Chun; Hatzakis, Emmanuel; McCarthy, Sean M et al. (2017) P-N Cooperative Borane Activation and Catalytic Hydroboration by a Distorted Phosphorous Triamide Platform. J Am Chem Soc 139:6008-6016
Nykaza, Trevor V; Harrison, Tyler S; Ghosh, Avipsa et al. (2017) A Biphilic Phosphetane Catalyzes N-N Bond-Forming Cadogan Heterocyclization via PIII/PV?O Redox Cycling. J Am Chem Soc 139:6839-6842
Reichl, Kyle D; Dunn, Nicole L; Fastuca, Nicholas J et al. (2015) Biphilic Organophosphorus Catalysis: Regioselective Reductive Transposition of Allylic Bromides via P(III)/P(V) Redox Cycling. J Am Chem Soc 137:5292-5
Wang, Sunewang Rixin; Radosevich, Alexander T (2015) P(NMe2)3-Mediated Umpolung Alkylation and Nonylidic Olefination of ?-Keto Esters. Org Lett 17:3810-3
Zhao, Wei; Radosevich, Alexander T (2015) Phosphorus(III)-Mediated Reductive Condensation of ?-Keto Esters and Protic Pronucleophiles. Organic Synth 92:267-276