Dissemination of multidrug-resistant pathogens has undermined the efficiency of antibiotics and urged a more thorough understanding of bacterial pathogenicity. Bacterial pathogens developed various elegant and sophisticated ways to disrupt and usurp the actin cytoskeleton, which plays numerous vital roles in human defense mechanisms. By hijacking the actin cytoskeleton, pathogenic toxins disturb cell morphology, cell motility, phagocytosis, epithelial permeability, and antigen presentation. Being constantly tuned to the host cytoskeleton by co-evolution, they recognize weaknesses in the host defense and represent powerful tools that foster the understanding of the cytoskeleton on molecular and cellular levels. The long-term goals of the project are to decipher molecular and cellular mechanisms of bacterial toxins targeting the actin cytoskeleton and to utilize the obtained knowledge for understanding functions of the actin cytoskeleton in norm and pathology. The current proposal is directly relevant to the NIH mission as it focuses on two families of related toxins, VopF/VopL and VopM/VopV, produced by human pathogens Vibrio cholerae and Vibrio parahaemolyticus. Both are a common cause of seafood poisoning, while the spread of V. parahaemolyticus has rendered it a major health threat worldwide. Both toxin families are known to affect actin, but their pathogenic mechanisms remain poorly understood. Vop toxins are predicted to cooperate, but the understanding of their synergistic effects is impossible without an in-depth understanding of their individual mechanisms. Research strategy: To assure scientific rigor, two toxins in each family will be characterized in parallel using several highly complementary experimental approaches. Specifically, the effects of the toxins on actin dynamics in bulk and at the single-filament level will be combined with cell biology approaches. Cellular targets of the toxins will be identified by a combination of proximity labeling and mass spectrometry.
In Specific Aim 1, the methodological gap between molecular and cellular mechanisms of toxicity will be addressed by live-cell imaging at the single-molecule level to reveal the molecular behavior of VopF/L toxins in host cells. The hypothesis will be tested that uncontrolled multidirectional polymerization of actin by the toxins results in disruption of actin polarity.
Specific Aim 2 will reveal novel mechanisms employed by VopM/V toxins. The hypothesis will be tested that hijacking the actin cytoskeleton by VopM/V toxins disrupts the ability of the cell to respond to external and internal stimuli leading to compromised cell integrity. Knowledge gained in the course of the proposal will be applied to discover currently unrecognized elements of the actin cytoskeleton involved in the mechanical homeostasis of the intestinal epithelium. The proposed study is both significant and innovative as it fills a major gap in our understanding of the toxicity of several life-threatening pathogens, reveals novel mechanisms for two families of bacterial toxins, and enables the research team to utilize the acquired knowledge by creating tools for deeper understanding of the actin cytoskeleton.

Public Health Relevance

The proposed research is relevant to human health as it explores novel mechanisms of pathogenicity employed by two families of bacterial toxins VopF/VopL and VopM/VopV. These toxins are produced by pathogenic strains of Vibrio cholerae and Vibrio parahaemolyticus, as well as related species of bacteria. Understanding such mechanisms will help to clarify the roles of the actin machinery in defense against pathogenic microorganisms, improve our ability to treat life- threatening infectious diseases, and lead to the creation of innovative research strategies, thereby satisfying several criteria relevant to NIH?s mission.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
2R01GM114666-06
Application #
10052806
Study Section
Nuclear and Cytoplasmic Structure/Function and Dynamics Study Section (NCSD)
Program Officer
Ainsztein, Alexandra M
Project Start
2015-09-01
Project End
2024-05-31
Budget Start
2020-08-01
Budget End
2021-05-31
Support Year
6
Fiscal Year
2020
Total Cost
Indirect Cost
Name
Ohio State University
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
832127323
City
Columbus
State
OH
Country
United States
Zip Code
43210
Kudryashova, Elena; Heisler, David B; Williams, Blake et al. (2018) Actin Cross-Linking Toxin Is a Universal Inhibitor of Tandem-Organized and Oligomeric G-Actin Binding Proteins. Curr Biol 28:1536-1547.e9
Kudryashova, Elena; Seveau, Stephanie M; Kudryashov, Dmitri S (2017) Targeting and inactivation of bacterial toxins by human defensins. Biol Chem 398:1069-1085
Harterink, Martin; da Silva, Marta Esteves; Will, Lena et al. (2017) DeActs: genetically encoded tools for perturbing the actin cytoskeleton in single cells. Nat Methods 14:479-482
Kudryashova, Elena; Heisler, David B; Kudryashov, Dmitri S (2017) Pathogenic Mechanisms of Actin Cross-Linking Toxins: Peeling Away the Layers. Curr Top Microbiol Immunol 399:87-112
Serebryannyy, Leonid A; Parilla, Megan; Annibale, Paolo et al. (2016) Persistent nuclear actin filaments inhibit transcription by RNA polymerase II. J Cell Sci 129:3412-25
Heisler, David B; Kudryashova, Elena; Grinevich, Dmitry O et al. (2015) ACTIN-DIRECTED TOXIN. ACD toxin-produced actin oligomers poison formin-controlled actin polymerization. Science 349:535-9