Cells adjust lipid desaturation and membrane fluidity to maintain homeostasis in response to temperature shifts. This fundamental process occurs in nearly all forms of life, but its underlying mechanism in eukaryotes is largely unknown. From a C. elegans screen exploring how genes control sensitivity to oxygen, we discovered a novel pathway comprising the genes egl-25 and acdh-11 (acyl-CoA dehydrogenase, ACDH) that facilitates temperature adaptation via the stearoyl-CoA desaturase (SCD) FAT-7 (unpublished). egl-25 encodes a C. elegans homolog of the mammalian receptors for adiponectin, which has potent insulin-sensitizing, anti- oxidative and anti-inflammatory properties in mammals. Human ACDH deficiency causes the most common inherited disorders of fatty acid oxidation, with syndromes that are exacerbated by hyperthermia, analogous to the vulnerability of C. elegans acdh-11 mutants to heat. SCDs control membrane fluidity by catalyzing the limiting step of fatty acid desaturation, and their dysregulation causes metabolic disorders and cancer. The goals of this project are to leverage our preliminary findings, innovative bioassays and powerful genetic approaches in C. elegans to molecularly identify mutations defining new genes interacting with egl-25/acdh-11 (Aim I), to characterize the functional roles of egl-25/acdh-11 in controlling fatty acid metabolism, desaturation and signaling (Aim II), and to elucidate the similarity and mechanisms of action of key egl-25/acdh-11 pathway components that are conserved in C. elegans and human cells (Aim III). This new investigator's prior training experience and areas of expertise in C. elegans genetic screens and mammalian cell signaling are well suited for carrying out this project in the Cardiovascular Research Institute at the University of California, San Francisco (UCSF). This proposal has the potential for high impact because it should 1) reveal a novel conserved pathway that drives temperature adaptation via a new mode of fatty acid signaling and suggests a mechanistic basis of the thermo-sensitivity phenotype caused by ACDH deficiency, and 2) elucidate mechanisms and regulators of the egl-25/acdh-11 pathway that should provide novel therapeutic targets for treating human conditions including metabolic and vascular inflammatory disorders.

Public Health Relevance

This project investigates cellular signaling in temperature adaptation and uses novel C. elegans models of human ACDH-deficiency for gene/pathway discovery and analysis as well as mammalian cells for functional validation. The project has public health relevance because it should identify novel components and regulators of the evolutionarily conserved AdipoR/ACDH pathway that may be valuable therapeutic targets for treating human conditions including metabolic, neurological and vascular inflammatory disorders.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM117461-04
Application #
9741739
Study Section
Membrane Biology and Protein Processing Study Section (MBPP)
Program Officer
Nie, Zhongzhen
Project Start
2016-09-01
Project End
2021-07-31
Budget Start
2019-08-01
Budget End
2020-07-31
Support Year
4
Fiscal Year
2019
Total Cost
Indirect Cost
Name
University of California San Francisco
Department
Physiology
Type
Schools of Medicine
DUNS #
094878337
City
San Francisco
State
CA
Country
United States
Zip Code
94118
Jiang, Wei; Wei, Yuehua; Long, Yong et al. (2018) A genetic program mediates cold-warming response and promotes stress-induced phenoptosis in C. elegans. Elife 7:
Bai, Meirong; Vozdek, Roman; Hnízda, Aleš et al. (2018) Conserved roles of C. elegans and human MANFs in sulfatide binding and cytoprotection. Nat Commun 9:897
Jiang, Wei; Zhou, Xiaoyan; Li, Zengxia et al. (2018) Prolyl 4-hydroxylase 2 promotes B-cell lymphoma progression via hydroxylation of Carabin. Blood 131:1325-1336
Ma, Dengke K; Li, Zhijie; Lu, Alice Y et al. (2015) Acyl-CoA Dehydrogenase Drives Heat Adaptation by Sequestering Fatty Acids. Cell 161:1152-1163