The molecular mechanisms underlying the aging process are poorly understood, thereby hindering the development of therapeutics to delay the onset of aging and age-related degenerative diseases. Genetic studies in the widely used model organism, Caenorhabditis elegans, have generated daf-2 mutants defective in insulin/IGF-1 signaling (IIS), which have significantly extended lifespans. The daf-2 mutation activates DAF-16, a transcription factor, which initiates downstream gene expression changes that mediate the life-extension phenotype. We have identified protein-activity changes that are downstream effects of DAF-16 activation using the tools of chemical proteomics. These studies complement conventional genomic and proteomic approaches by providing insight into low-abundance proteins and posttranslational modifications (PTMs) implicated in IIS. From our preliminary studies, we identified a lipid-binding protein, LBP-3, which upon RNAi-mediated knockdown increases both lifespan and dauer formation in C. elegans. Given the established dysregulation of lipid metabolism in IIS, and the confirmed role of other lipid-binding proteins in controlling lifespan and stress resistance, we hypothesize that LBP-3 is a novel mediator of IIS. To test this hypothesis, we will determine the mechanism by which LBP-3 acts within known nodes of the IIS pathway to regulate lifespan. Furthermore, since mammalian homologs of LBP-3 are known to be redox regulated, and dysregulation of reactive oxygen species (ROS) levels is a characteristic feature of IIS, we will investigate the in vivo oxidation state of LBP-3. In additio to revealing a novel mode of regulation for C. elegans LBP-3, these studies will also serve to more globally evaluate protein oxidation events accompanying IIS. Lastly, since oxidation of mammalian LBPs is known to affect protein stability and lipid binding, we will evaluate the effect of oxidation on C. elegans LBP-3 function. LBP-3 contains a highly reactive cysteine residue, Cys154, which is the predicted site of oxidation. We will exploit this reactive cysteine to develop covalent small-molecule probes and inhibitors to pharmacologically modulate LBP-3 function in C. elegans. Together, these studies will: (1) characterize a novel downstream mediator of C. elegans IIS; (2) reveal the role of protein oxidation in governing the function of LBP-3 and other C. elegans proteins during IIS; and (3) demonstrate that LBP-3 can be targeted by small molecules to pharmacologically modulate C. elegans lifespan.

Public Health Relevance

We propose to apply chemical proteomic technologies to discover changes in cysteine- mediated protein activities during insulin/IGF-1 signaling and aging in C. elegans. Our studies are geared toward discovering novel protein activities and posttranslational modes of regulation implicated in aging.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM118431-04
Application #
9488031
Study Section
Synthetic and Biological Chemistry B Study Section (SBCB)
Program Officer
Barski, Oleg
Project Start
2015-08-03
Project End
2020-05-31
Budget Start
2018-06-01
Budget End
2019-05-31
Support Year
4
Fiscal Year
2018
Total Cost
Indirect Cost
Name
Boston College
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
045896339
City
Chestnut Hill
State
MA
Country
United States
Zip Code
Nemmara, Venkatesh V; Subramanian, Venkataraman; Muth, Aaron et al. (2018) The Development of Benzimidazole-Based Clickable Probes for the Efficient Labeling of Cellular Protein Arginine Deiminases (PADs). ACS Chem Biol 13:712-722
Lentz, Christian S; Sheldon, Jessica R; Crawford, Lisa A et al. (2018) Identification of a S. aureus virulence factor by activity-based protein profiling (ABPP). Nat Chem Biol 14:609-617
Bak, Daniel W; Bechtel, Tyler J; Falco, Julia A et al. (2018) Cysteine reactivity across the subcellular universe. Curr Opin Chem Biol 48:96-105
Cole, Kyle S; Grandjean, Julia M D; Chen, Kenny et al. (2018) Characterization of an A-Site Selective Protein Disulfide Isomerase A1 Inhibitor. Biochemistry 57:2035-2043
Bechtel, Tyler J; Weerapana, Eranthie (2017) From structure to redox: The diverse functional roles of disulfides and implications in disease. Proteomics 17:
Child, Matthew A; Garland, Megan; Foe, Ian et al. (2017) Toxoplasma DJ-1 Regulates Organelle Secretion by a Direct Interaction with Calcium-Dependent Protein Kinase 1. MBio 8:
Gorelenkova Miller, Olga; Cole, Kyle S; Emerson, Corey C et al. (2017) Novel chloroacetamido compound CWR-J02 is an anti-inflammatory glutaredoxin-1 inhibitor. PLoS One 12:e0187991
Abo, Masahiro; Weerapana, Eranthie (2017) Chemical Probes for Redox Signaling and Oxidative Stress. Antioxid Redox Signal :
Quinti, Luisa; Dayalan Naidu, Sharadha; Träger, Ulrike et al. (2017) KEAP1-modifying small molecule reveals muted NRF2 signaling responses in neural stem cells from Huntington's disease patients. Proc Natl Acad Sci U S A 114:E4676-E4685
Qian, Yu; Weerapana, Eranthie (2017) A Quantitative Mass-Spectrometry Platform to Monitor Changes in Cysteine Reactivity. Methods Mol Biol 1491:11-22

Showing the most recent 10 out of 14 publications