Tumor metastasis is the major cause of mortality in human breast cancer. Previous studies have shown that breast cancer metastasis is driven by paracrine signaling between tumor cells and stromal cells, which promotes invasion, intravasation, extravasation and tumor growth at secondary sites. This paracrine signaling is dependent on the reciprocal production of growth factors, cytokines and chemokines produced by stromal cells and tumor cells, many of which signal via G-protein-coupled receptors (GPCRs). We now present extensive preliminary data showing that GPCR signaling to PI3K? is critical for tumor cell invasion, intravasation and extravasation. Importantly, loss of GPCR signaling to PI3K? has a more severe phenotype on tumor intravasation and extravasation in vivo than loss of kinase activity, suggesting that inhibition of p110?-G?? binding might provide an alternative therapeutic approach for the prevention of breast cancer metastasis. This proposal examines the role of PI3K? in breast cancer metastasis, using both in vitro and in vivo approaches.
The first aim comprises mechanistic studies to evaluate the role of PI3K? in the formation of invadopodia, which allow tumor cells to invade into surrounding tissue. We will focus on two models of p110? function in invadopodia maturation: (a) as a local source of PI[3,4,5]P3, whose metabolism to PI[3,4]P2 recruits the critical invadopodia protein Tks5; and (b) as a regulator of integrin signaling, which is important for invadopodia maturation and MMP secretion.
Aim 2 examines how p110? integrates upstream signals from GPCRs, RTKs and Rac1, and examines the role of Rac1 signaling to PI3K? in breast cancer metastasis. In particular, we find that mutation of the G?? binding site in p110? has no effect on Rac1GTP binding and activation of p110? in vitro, but blocks PI3K? activation by constitutively active Ra1 in cells. Similarly, inhibitors that block the binding of the p85 regulatory subunit to tyrosine-phosphorylated proteins also inhibit PI3K? activation by CA-Rac. We will explore two hypotheses to explain these data: first, that Rac binding to PI3K? in cells requires the targeting of PI3K? to the membrane, and second, that activation of PI3K? by G?? or SH2-mediated interactions sensitizes PI3K? to Rac. We will also directly test the role of Rac binding to p110? in breast cancer metastasis using in vitro and in vivo xenograft models. Finally, we will study the role of PI3K? in breast cancer metastasis using an established genetic mouse model, MMTV-PyMT, which develops mammary epithelial tumors with high penetrance and has an intact immune system. We will cross PyMT mice to a knock-in mouse expressing the GPCR-uncoupled mutant of p110?, to definitively establish the role of GPCR signaling to PI3K? in tumor progression and metastasis. Altogether, these studies will lead to important new insights into the basic biology of PI3K?, and the role of this complex signaling enzyme in breast cancer metastasis.

Public Health Relevance

PI 3-kinases are intracellular enzymes that play an important role in cell proliferation and survival, and which frequently contain activating mutations in human cancers. Our work suggests that some forms of PI 3-kinase may be drug targets for the prevention of breast cancer metastasis. Understanding the mechanisms that regulate PI 3-kinase activity in normal and malignant cells is critical for the design of novel and specific drug to target these enzymes in human disease.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM119279-05
Application #
9742486
Study Section
Molecular and Integrative Signal Transduction Study Section (MIST)
Program Officer
Koduri, Sailaja
Project Start
2016-08-01
Project End
2020-07-31
Budget Start
2019-08-01
Budget End
2020-07-31
Support Year
5
Fiscal Year
2019
Total Cost
Indirect Cost
Name
Albert Einstein College of Medicine
Department
Type
DUNS #
081266487
City
Bronx
State
NY
Country
United States
Zip Code
10461
Dulyaninova, Natalya G; Ruiz, Penelope D; Gamble, Matthew J et al. (2018) S100A4 regulates macrophage invasion by distinct myosin-dependent and myosin-independent mechanisms. Mol Biol Cell 29:632-642
Khan, Ahad; Bresnick, Anne; Cahill, Sean et al. (2018) Advantages of Molecular Weight Identification during Native MS Screening. Planta Med 84:1201-1212
Erami, Zahra; Khalil, Bassem D; Salloum, Gilbert et al. (2017) Rac1-stimulated macropinocytosis enhances G?? activation of PI3K?. Biochem J 474:3903-3914
Sun, Jia-Bin; Holmgren, Jan; Larena, Maximilian et al. (2017) Deficiency in Calcium-Binding Protein S100A4 Impairs the Adjuvant Action of Cholera Toxin. Front Immunol 8:1119
Houslay, Daniel M; Anderson, Karen E; Chessa, Tamara et al. (2016) Coincident signals from GPCRs and receptor tyrosine kinases are uniquely transduced by PI3K? in myeloid cells. Sci Signal 9:ra82