We propose to continue development and support for the UltraScan-III (US3) software suite, a comprehensive toolkit for the analysis of data from hydrodynamic experiments and hydrodynamic simulations. Such experiments include analytical ultracentrifugation, small angle X-ray and neutron scattering experiments, as well as bead model simulations. Support for this project will assure future availability of a mature multi-platform analysis suite with important and unique capabilities not found in any other software packages. Chief among them are tight integration of supercomputing capabilities, LIMS support for collaboration, and specialized analysis routines. US3 enjoys widespread use in the AUC and SAXS/SANS communities, and offers the most robust optimization and simulation algorithms available, resulting in unmatched detail, and provides the highest throughput, a flexible, modern GUI, and a comprehensive list of analysis routines. Among the proposed developments are support for the next generation of three new multi-wavelength detection capable AUC instruments which will enable paradigm-changing solution studies of complex systems where components with distinct chromophores can be simultaneously separated based on both their spectral and hydrodynamic properties. Further enhancements include many algorithm improvements, porting of AUC and SOMO codes to the latest 3rd party C++ frameworks, supporting new operating systems such as 64-bit support on Windows, and enabling uniform integration of UltraScan-SOMO in the US3 class libraries.
The proposed work will further develop and continue to maintain the UltraScan software suite. The software will be adapted to three new commercial instruments which feature a revolutionary multi-wavelength detector, and updated to be compatible with the latest libraries and operating systems. This work will enable groundbreaking and novel studies into the dynamic interactions of biological macromolecules, which is important for many current NIH investigations, and for the development of drugs against any disease studied on the molecular level. The proposed research will contribute important tools for studies into the mechanisms of aging, cancer, HIV, neurodegenerative diseases and help with the testing of drug interactions.
Showing the most recent 10 out of 13 publications