Mitochondria are dynamic organelles that undergo continuous fission and fusion. Mitochondrial dynamics are essential for cell survival, as well as for mitochondrial quality control, transport, distribution and inheritance. Defects in mitochondrial dynamics are implicated in various neurological disorders including Alzheimer?s, Parkinson?s and Huntington?s diseases, as well as in cardiovascular disease and cancer. The molecular mechanisms that accomplish mitochondrial membrane fission and fusion are poorly understood, as are the roles of the molecules involved in these processes. The long-term goal of this proposal is to address such issues. The mechanoenzymatic GTPase, dynamin-related protein 1 (Drp1) is the master regulator of mitochondrial fission. Cytosolic Drp1 initiates mitochondrial fission via interactions with adaptor proteins, Mff, MiD49/51, or Fis1 localized at the mitochondrial surface. Subsequent Drp1 polymerization as ?helical scaffolds? around pre-destined mitochondrial division sites and GTP hydrolysis-driven scaffold constriction catalyzes mitochondrial fission. Exciting new studies have also necessitated a cooperative role for direct Drp1-phospholipid interactions, specifically with the mitochondrial lipid, cardiolipin (CL), in mitochondrial fission. However, very little is known about the cooperativity of Drp1-adaptor and Drp1-CL interactions, either in space or in time, during this process. Several unknown fundamental issues essential for understanding Drp1-mediated mitochondrial fission will be addressed in this application. These include 1) the mechanisms underlying Drp1 CL recognition, and the identity of Drp1 residues involved in specific phospholipid interactions, 2) the mechanism of the Drp1 variable domain (VD) in CL reorganization and nonbilayer phase transition, 3) the domain-specific topography of Drp1 on the membrane surface and conformational rearrangements that ensue upon specific adaptor and CL interactions, and 4) the cooperativity of CL and adaptor interactions in effecting mitochondrial fission. The proposed experiments will test the overarching hypothesis that cooperative Drp1 interactions with protein adaptors and CL promote the formation of a productive ?fission complex? that is localized in CL-rich micro-environments and drives membrane remodeling and fission through a Drp1 GTP hydrolysis-dependent CL bilayer-to-nonbilayer phase transition mechanism. We will use a tailor-made array of innovative fluorescence spectroscopic and microscopic approaches, coupled to solution and solid state NMR, to address these issues. These include the use of a novel variation of the FRET approach to determine domain-specific Drp1-membrane distances, collisional quenching of fluorescence to determine and measure Drp1 VD membrane insertion, and fluorescence imaging on model GUVs to visualize adaptor- and CL-regulated, Drp1-mediated membrane remodeling and fission. Successful outcomes of this research will provide (i) a fundamentally improved understanding of the cooperative molecular mechanisms underlying mitochondrial fission, and (ii) a molecular foundation for the design of drugs and therapeutics that can beneficially modulate mitochondrial dynamics under various disease states.

Public Health Relevance

) Defects in mitochondrial fission are implicated in various human neurological disorders including Alzheimer?s, Parkinson?s and Huntington?s diseases, as well as in inherited dilated cardiomyopathy. A molecular level understanding of the mechanisms that govern mitochondrial fission therefore represents a critical first step toward the design of novel drugs and therapeutic strategies to help ameliorate these defects. The proposed research aims to dissect and elucidate the molecular mechanisms underlying Drp1-mediated mitochondrial fission, a phenomenon essential for cell survival and function.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Project (R01)
Project #
Application #
Study Section
Biochemistry and Biophysics of Membranes Study Section (BBM)
Program Officer
Flicker, Paula F
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Case Western Reserve University
Schools of Medicine
United States
Zip Code
Lu, Bin; Kennedy, Bridget; Clinton, Ryan W et al. (2018) Steric interference from intrinsically disordered regions controls dynamin-related protein 1 self-assembly during mitochondrial fission. Sci Rep 8:10879
Ramachandran, Rajesh; Schmid, Sandra L (2018) The dynamin superfamily. Curr Biol 28:R411-R416
Ramachandran, Rajesh (2018) Mitochondrial dynamics: The dynamin superfamily and execution by collusion. Semin Cell Dev Biol 76:201-212