Thegoaloftheproposedresearchistogenerategeneticallyencodedbioluminescenttagsforlive-cell luminescence-basedphotoactivatedlocalizationmicroscopy(L-PALM).Thisrevolutionarymodeof superresolutionimagingwillmaintainallofthebenefitsoffluorescencePALM(fPALM)butwilleliminatethe needforexcitationlight.fPALMislargelyunsuitableforimaginglivecellsbecauseitrequireshighexcitation intensitiesthatleadtophototoxicity.Becauseluminescencegenerateslightwithouttheneedforexternal excitation,L-PALMwillnotsufferfromthislimitation.Thelatestgenerationofgeneticallyencoded bioluminescentlabelsarewellsuitedforwidefieldmicroscopyofsubcellularstructures,butarestill approximately1000-foldtoodimtobeusedforsingle-moleculelocalizationonpracticaltimescales.Toremedy thisdeficiency,thisstudyisdesignedtoproducebioluminescentprobeswithphotonoutputrates sufficienttolocalize~100,000moleculesinoneminute.Togeneratethisincreasedoutput,luciferaseswill firstbecoupledtoourbrightestfluorescentproteinstomaximizeluminescencequantumyieldviatheFrster resonanceenergytransfermechanism.Oncemaximaloutputisachievedinthisfirststep,theluciferase portionofthefusionwillthenbesubjectedtostructure-guideddirectedevolutiontargetedatlowering oxyluciferinbindingaffinityandthusincreasingthecatalyticrateoftheenzyme.Suchalterationsarepredicted toreducetheluminescencequantumyieldoftheluciferase,butenergytransfertoafluorescentproteinwill rescuetheluminescence,allowingmuchfasterenzymestobeengineeredwiththisstrategy.Tobeusefulfor live-cellL-PALM,bioluminescentprobesmustalsobecapableofswitchingonandoffcontrollablyto preventsignaloverlapbetweenindividualmoleculesineachimageframe.Twoindependentmechanismsfor producingswitchablelightoutputwillbepursuedinthisproject:(1)optimizationofenergytransferbetween luciferasesandphotoswitchablefluorescentproteins,followedbydirectedevolutiontoincreaselightoutput andimproveswitchingkinetics;?(2)insertionoflight-modulateddomainsintosplitluciferasesinorderto allostericallycontrolenzymeactivity.Throughouttheproject,heavyemphasiswillbeplacedonRosetta-based structure-guidedcomputationaldesignforgeneratingnovelluciferase-fluorescentproteinfusiontopologies, alteringluciferaseactivesiteenvironments,andengineeringallosterically-regulatedluciferases.Directed evolutionwithimage-basedscreeningwillthenbetheprimaryapproachforimprovingthepropertiesofprobes underdevelopmentineachaim.Theendproductsofthisprojectwillbeasetofgeneticallyencoded bioluminescentprobeswithbrightnessandphotoswitchingpropertiessuitableforthedevelopmentofL- PALMmethodologies.BeyondtheirultimateutilityforL-PALMimaging,manyoftheprobescreatedinthe courseofthisprojectwillbethebrightestandhighest-performingbioluminescenttagsyetdeveloped,andas suchwillhighlyusefulinnumerousotherlive-cellandwhole-organismimagingapplications.

Public Health Relevance

The goal of the proposed research is to develop the technologies necessary to allow high-precision imaging of single molecules inside living cells without causing damage. The tools developed in this study will be made widely available to the biological and biomedical research community where they will be highly useful for studying basic biological and disease processes in living cells across a very broad range of medically relevant areas such as cancer, neurodegenerative disease, and aging.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
1R01GM121944-01
Application #
9220453
Study Section
Special Emphasis Panel (ZRG1-EBIT-J (90)S)
Program Officer
Sammak, Paul J
Project Start
2017-02-16
Project End
2021-01-31
Budget Start
2017-02-16
Budget End
2018-01-31
Support Year
1
Fiscal Year
2017
Total Cost
$334,241
Indirect Cost
$136,741
Name
Scintillon Institute for Photobiology
Department
Type
Research Institutes
DUNS #
078367362
City
San Diego
State
CA
Country
United States
Zip Code
92121