Accurate modeling of the structure and recognition of adaptive immune receptors is a major challenge in computational biology. Despite a shared immunoglobulin structural framework, highly variable antigen binding loop sequences and structures, with intrinsic dynamics and binding conformational changes, are often not accurately represented or correctly modeled using current algorithms. There is an even greater need to address this challenge due to the rapidly growing field of immune sequencing, which often results in thousands of sequences of antigen-specific immune receptors from the repertoire of a single individual per experiment. In the absence of reliable modeling tools, the observed shared sequence motifs and areas of divergence lack a structural and mechanistic explanation, given that experimental structural characterization is not practical or feasible for more than a handful of molecules. The focus of this application is on T cell receptors (TCRs), which recognize antigenic peptides by the major histocompatibility complex (MHC), leading to the cellular immune response. We will develop advanced modeling and design algorithms to address the challenges of flexible loop modeling through informatics and knowledge-based developments to help unravel their recognition code. This will entail the development of algorithms to reliably model TCR structures from sequence (Aim 1), model TCR recognition of peptide-MHCs through docking (Aim 2), and design TCR recognition through loop engineering (Aim 3).
These Aims will be accomplished through validation against existing experimental structural and affinity data, as well as close partnership with experimental laboratories that will provide sequence, structural, dynamic, and binding measurements of TCRs, and validate affinity and structure of designed receptors. Collectively, these developments will allow the illumination of the mechanistics underpinning recognition by specific and repertoire-level TCRs from sequence, improved loop modeling and docking algorithms, and the capability to effectively control and engineer TCR recognition through structure-based design.

Public Health Relevance

T cell receptors are exceptionally diverse and capable of engaging a broad array of antigens, and are of high interest as therapeutics and in the study of immune response to diseases and viruses. This goal of this project is to generate a robust modeling and design framework to accurately predict structures of T cell receptors from sequence, model antigen recognition, and to design new T cell receptors with desired targeting capabilities, which will be applied to T cell receptors from immune repertoire sequencing efforts and those of medical and therapeutic interest.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
1R01GM126299-01A1
Application #
9595902
Study Section
Macromolecular Structure and Function D Study Section (MSFD)
Program Officer
Lyster, Peter
Project Start
2018-09-01
Project End
2022-05-31
Budget Start
2018-09-01
Budget End
2019-05-31
Support Year
1
Fiscal Year
2018
Total Cost
Indirect Cost
Name
University of Maryland College Park
Department
Miscellaneous
Type
University-Wide
DUNS #
790934285
City
College Park
State
MD
Country
United States
Zip Code
20742