Although the chromosomal basis of Down syndrome (DS) has been known for over 30 years, there is still a surprising lack of knowledge about causes of nondisjunction leading to trisomy 21, or to any other human trisomy. Also, little is known about risk factors that predispose DS individuals to specific birth defects. Based on our ongoing studies, we have identified important correlates to nondisjunction. We have found strong evidence that altered recombination along the nondisjoined chromosome 21 is associated with increased risk for all types of meiotic errors. New data suggest that this altered recombination may be a cell- wide phenomenon. Our preliminary analyses of environmental factors suggest that smoking and oral contraceptive use around the time of conception may predispose to one specific type of nondisjunction error, implying that risk factors affect different stages of meiosis. The success of our current studies has resulted from the combined use of cytogenetic, molecular, and epidemiological methods to study DS not as a single entity, but as subgroups defined by the type of error. We propose to extend these studies to investigate: 1) the relationship of altered recombination and maternal age; 2) individual variation in cell- wide recombination as a risk factor for nondisjunction; 3) the role of recombination in paternal nondisjunction; and 4) environmental and maternal risk factors for nondisjunction and for DS-associated birth defects.
These specific aims require a substantial increase in the study population. We have a unique opportunity to ascertain over 1350 cases of trisomy 21 from well- established birth defect surveillance systems using the infrastructure established by the National Birth Defects Prevention Study. Six of the study sites (AR, CA, GA, IA, NJ, NY) will contribute a population-based sample of cases and controls. All sites are experienced in identifying, tracking, interviewing, and collecting biological samples from families with birth defects. The data resulting from this proposal will provide a valuable resource to uncover the etiology and consequences of nondisjunction of chromosome 21. These studies parallel those on other significant trisomies proposed by Dr. Terry Hassold in the companion IRPG application. Indeed, the questions and methodological approaches are nearly identical. By combining a large, population-based analysis of trisomy 21 with analyses of other autosomal and sex chromosome trisomies, we intend to characterize the genesis of the most common and clinically important human chromosome abnormalities.

Agency
National Institute of Health (NIH)
Institute
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Type
Research Project (R01)
Project #
5R01HD038979-03
Application #
6536140
Study Section
Genome Study Section (GNM)
Program Officer
Oster-Granite, Mary Lou
Project Start
2000-06-22
Project End
2005-05-31
Budget Start
2002-06-01
Budget End
2003-05-31
Support Year
3
Fiscal Year
2002
Total Cost
$1,281,179
Indirect Cost
Name
Emory University
Department
Genetics
Type
Schools of Medicine
DUNS #
042250712
City
Atlanta
State
GA
Country
United States
Zip Code
30322
Oliver, Tiffany Renee; Middlebrooks, Candace; Harden, Ariel et al. (2016) Variation in the Zinc Finger of PRDM9 is Associated with the Absence of Recombination along Nondisjoined Chromosomes 21 of Maternal Origin. J Down Syndr Chromosom Abnorm 2:
Begum, Ferdouse; Sharker, Monir H; Sherman, Stephanie L et al. (2016) Regionally Smoothed Meta-Analysis Methods for GWAS Datasets. Genet Epidemiol 40:154-60
Begum, Ferdouse; Chowdhury, Reshmi; Cheung, Vivian G et al. (2016) Genome-Wide Association Study of Meiotic Recombination Phenotypes. G3 (Bethesda) 6:3995-4007
Zeng, Zhen; Weeks, Daniel E; Chen, Wei et al. (2016) A Pipeline for Classifying Relationships Using Dense SNP/SNV Data and Putative Pedigree Information. Genet Epidemiol 40:161-71
Visootsak, Jeannie; Huddleston, Lillie; Buterbaugh, Allison et al. (2016) Influence of CHDs on psycho-social and neurodevelopmental outcomes in children with Down syndrome. Cardiol Young 26:250-6
Ramachandran, Dhanya; Mulle, Jennifer G; Locke, Adam E et al. (2015) Contribution of copy-number variation to Down syndrome-associated atrioventricular septal defects. Genet Med 17:554-60
Ramachandran, Dhanya; Zeng, Zhen; Locke, Adam E et al. (2015) Genome-Wide Association Study of Down Syndrome-Associated Atrioventricular Septal Defects. G3 (Bethesda) 5:1961-71
Albizua, I; Rambo-Martin, B L; Allen, E G et al. (2015) Association between telomere length and chromosome 21 nondisjunction in the oocyte. Hum Genet 134:1263-70
Middlebrooks, Candace D; Mukhopadhyay, Nandita; Tinker, Stuart W et al. (2014) Evidence for dysregulation of genome-wide recombination in oocytes with nondisjoined chromosomes 21. Hum Mol Genet 23:408-17
Oliver, Tiffany Renee; Middlebrooks, Candace D; Tinker, Stuart W et al. (2014) An examination of the relationship between hotspots and recombination associated with chromosome 21 nondisjunction. PLoS One 9:e99560

Showing the most recent 10 out of 40 publications