Technological advances have hyper-accelerated gene discovery and hold great promise of bringing genomic technologies to the clinic as a first-stage diagnostic tool. However, many challenges remain to reach that goal, including the fact that variable penetrance and expressivity are highly prevalent, even in traditional monogenic traits and that our understanding of the genetic mechanisms that contribute to phenotypic variability remain largely elusive. Bardet-Biedl syndrome (BBS) has served as a useful model for understanding genetic architecture and for dissecting second-site modification in humans. As part of our long-standing investigations, we have identified a significant fraction of causal BBS genes, we have interrogated the nature of second-site modification and we have developed in vivo tools to dissect the effect of variants on the phenotype and model epistasis. Further, we have unified BBS and other clinically-overlapping disorders under the ciliopathy umbrella and have shown that the distribution and nature of dysfunction in the primary cilium and its anchoring structure, the basal body, can inform disease causality and severity. Our competing renewal is composed of three Aims. First, saturated nextgen sequencing of the ciliary proteome, as well as more traditional studies, have identified primary mutations in ~80% of BBS patients. We propose to use whole exome sequencing in families bereft of causal ciliary mutations to identify novel BBS genes. Second, our preliminary data suggest that CNVs are a major contributor to the mutational burden of BBS and other ciliopathies. As such, we will use a custom-designed CGH array with ultra-high density across the ciliary proteome to systematically identify the CNV burden in these disorders and to uncover both causal and potential epistatic interactions. Finally, we have significant new data that implicate the proteasome as a protagonist for the diverse signaling defects observed in BBS animal models and patients. We will therefore ask whether pharmacological agonists of proteasomal activity are of therapeutic benefit to BBS animal models by assessing whether administration of such compounds to mouse BBS models can improve phenotypic outcomes in key sites of pathology. Taken together, our studies will a) illuminate new pathogenic mechanisms orthogonal to the ciliary disease paradigms;b) enrich our understanding on the contribution of CNVs in ciliopathies, and inform genetic architecture;and c) provide the first therapeutic lead that, if successful, would b suitable for clinical trials.

Public Health Relevance

Our studies will identify new BBS genes that are not known or predicted to be associated with the cilium or the basal body, thereby providing orthogonal insight into the causality of the disease and the biology of this fascinating organelle. Further, fr the first time we will interrogate at high resolution the contribution of CNVs in this disorder and together with our previously established data on the nature and distribution of point mutations across the ciliary proteome, we will compile a comprehensive picture of mutational distribution that informs both causality and second-site modification. Finally, fuelled by biochemical studies in BBS models and patients, we will ask whether pharmacological amelioration of proteasomal function is of potential therapeutic benefit to BBS patients;given that some of these compounds are already approved by the FDA, these studies could facilitate the initiation of the first clinica trials not only for BBs patients, but also for patients with other related ciliopathies.

National Institute of Health (NIH)
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Research Project (R01)
Project #
Application #
Study Section
Genetics of Health and Disease Study Section (GHD)
Program Officer
Parisi, Melissa
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Duke University
Anatomy/Cell Biology
Schools of Medicine
United States
Zip Code
Heydeck, Westley; Fievet, Lorraine; Davis, Erica E et al. (2018) The complexity of the cilium: spatiotemporal diversity of an ancient organelle. Curr Opin Cell Biol 55:139-149
Liu, Yangfan P; Bosch, Daniƫlle G M; Siemiatkowska, Anna M et al. (2017) Putative digenic inheritance of heterozygous RP1L1 and C2orf71 null mutations in syndromic retinal dystrophy. Ophthalmic Genet 38:127-132
Goetz, Sarah C; Bangs, Fiona; Barrington, Chloe L et al. (2017) The Meckel syndrome- associated protein MKS1 functionally interacts with components of the BBSome and IFT complexes to mediate ciliary trafficking and hedgehog signaling. PLoS One 12:e0173399
Helm, Benjamin M; Willer, Jason R; Sadeghpour, Azita et al. (2017) Partial uniparental isodisomy of chromosome 16 unmasks a deleterious biallelic mutation in IFT140 that causes Mainzer-Saldino syndrome. Hum Genomics 11:16
Frosk, Patrick; Arts, Heleen H; Philippe, Julien et al. (2017) A truncating mutation in CEP55 is the likely cause of MARCH, a novel syndrome affecting neuronal mitosis. J Med Genet 54:490-501
Ta-Shma, Asaf; Khan, Tahir N; Vivante, Asaf et al. (2017) Mutations in TMEM260 Cause a Pediatric Neurodevelopmental, Cardiac, and Renal Syndrome. Am J Hum Genet 100:666-675
Katsanis, Nicholas (2016) The continuum of causality in human genetic disorders. Genome Biol 17:233
Lindstrand, Anna; Frangakis, Stephan; Carvalho, Claudia M B et al. (2016) Copy-Number Variation Contributes to the Mutational Load of Bardet-Biedl Syndrome. Am J Hum Genet 99:318-36
Boldt, Karsten; van Reeuwijk, Jeroen; Lu, Qianhao et al. (2016) An organelle-specific protein landscape identifies novel diseases and molecular mechanisms. Nat Commun 7:11491
Jordan, Daniel M; Frangakis, Stephan G; Golzio, Christelle et al. (2015) Identification of cis-suppression of human disease mutations by comparative genomics. Nature 524:225-9

Showing the most recent 10 out of 65 publications