This proposal focuses on the development, regulation and discovery of naturally occurring antimicrobial proteins in the epididymis, highlighting the defensins and cathelicidins. Natural antimicrobial proteins are part of the innate immune system, and they likely protect the reproductive tract from invasion by pathogenic microbes thus helping to prevent diseases such as epididymitis.
The first aim i s to identify novel antimicrobial epididymal proteins in epididymal luminal fluid and to test their biological activities. The reproductive organs produce a variety of antimicrobial substances and it is likely that some of these natural antibiotics remain to be characterized. A step-wise approach will be used to test for antibacterial activity in luminal fluid from different regions of the epididymis, and subsequently to identify, characterize, and analyze the specificities of antimicrobial proteins.
The second aim i s to determine the pattern of expression of mRNA and protein for selected defensins and cathelicidin during development of the rat epididymis. These studies will determine the temporal onset of expression, quantify changes in expression levels during development, and localize expression to specific epithelial cell types.
The third aim i s to determine factors regulating expression of antimicrobial proteins in the epididymis by testing the effects of androgens, luminal fluid, exposure to bacterial products, and obstruction on expression of selected genes. Methods include detection of antimicrobial proteins by a gel overlay method and other bacteriologic assays, northern and western analyses, real time PCR, in situ hybridization, and immunohistochemistry, 2-D gel electrophoresis, microsequencing by mass spectrometry, and standard approaches of molecular biology. A set of antimicrobial proteins known to be present in the rat epididymis will be studied in aims 2 & 3: rat beta defensins 1 and 2 (RBD-1 and RBD-2), Bin1b, a cathelicidin (rCRAMP), and the defensin-like molecule E-3. The proposed studies will increase our knowledge of innate antimicrobial proteins in the male reproductive system, and they also present the opportunity for discovery and characterization of new antibiotic agents.

Agency
National Institute of Health (NIH)
Institute
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Type
Research Project (R01)
Project #
5R01HD045783-02
Application #
6895159
Study Section
Reproductive Biology Study Section (REB)
Program Officer
Rankin, Tracy L
Project Start
2004-05-15
Project End
2009-02-28
Budget Start
2005-03-01
Budget End
2006-02-28
Support Year
2
Fiscal Year
2005
Total Cost
$274,200
Indirect Cost
Name
University of Virginia
Department
Anatomy/Cell Biology
Type
Schools of Medicine
DUNS #
065391526
City
Charlottesville
State
VA
Country
United States
Zip Code
22904
Teves, M E; Jha, K N; Song, J et al. (2013) Germ cell-specific disruption of the Meig1 gene causes impaired spermiogenesis in mice. Andrology 1:37-46
Zhang, Zhibing; Shen, Xuening; Gude, David R et al. (2009) MEIG1 is essential for spermiogenesis in mice. Proc Natl Acad Sci U S A 106:17055-60
Xu, Bingfang; Hao, Zhonglin; Jha, Kula N et al. (2008) TSKS concentrates in spermatid centrioles during flagellogenesis. Dev Biol 319:201-10
Xu, Bingfang; Hao, Zhonglin; Jha, Kula N et al. (2008) Targeted deletion of Tssk1 and 2 causes male infertility due to haploinsufficiency. Dev Biol 319:211-22