Congenital muscular dystrophies (CMDs) with brain malformations are genetic diseases. Brain malformation involves movement of neurons out of the cerebral cortex through breaches of the pial basement membrane (PBM). We propose to study the critical molecules underlying formation of the PBM by radial glia. O-mannosyl glycosylation appears to have an important role. Also further studies of POMT2 conditional knockout mice may shed light on disruptions of the PBM that mediate migration of cells out of the brain. Our hypothesis is that radial glia have a key role in assembling the PBM.
Specific Aims are to investigate: 1. The role of radial glia in assembly of the pial basement membrane (PBM). 2. The mechanisms of PBM abnormalities in POMT2 knockout mice. 3. The feasibility of using Large in gene therapy. The proposed research will provide new and important insights into how protein O- mannosyl glycosylation regulates the formation and maintenance of the PBM. It should also yield insights on mechanisms underlying brain malformations in type II lissencephaly. Better knowledge of the key molecules involved in PBM disruptions should lead to potential gene therapies. Gene delivery to restore protein functions should be directed at those cells that organize the formation of the PBM. The proposed research should lead to an improved understanding of the pathogenesis of muscular dystrophies in general and their treatment.

Public Health Relevance

Type II lissencephaly in congenital muscular dystrophies is caused by disruptions of the pial basement membrane. Aberrant cell-extracellular matrix interaction at the brain surface is the cause of those disruptions. Studies will determine the cells and their molecules responsible for organizing the formation of the pial basement membrane to identify potential targets for gene therapy.

Agency
National Institute of Health (NIH)
Institute
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Type
Research Project (R01)
Project #
1R01HD060458-01A2
Application #
7731000
Study Section
Intercellular Interactions (ICI)
Program Officer
Vitkovic, Ljubisa
Project Start
2009-09-20
Project End
2014-06-30
Budget Start
2009-09-20
Budget End
2010-06-30
Support Year
1
Fiscal Year
2009
Total Cost
$325,775
Indirect Cost
Name
Upstate Medical University
Department
Other Basic Sciences
Type
Schools of Medicine
DUNS #
058889106
City
Syracuse
State
NY
Country
United States
Zip Code
13210
Sato, Yuya; Shimono, Chisei; Li, Shaoliang et al. (2013) Nephronectin binds to heparan sulfate proteoglycans via its MAM domain. Matrix Biol 32:188-95
Yu, Miao; He, Yonglin; Wang, Kejian et al. (2013) Adeno-associated viral-mediated LARGE gene therapy rescues the muscular dystrophic phenotype in mouse models of dystroglycanopathy. Hum Gene Ther 24:317-30
Zhang, Peng; Yang, Yuan; Candiello, Joseph et al. (2013) Biochemical and biophysical changes underlie the mechanisms of basement membrane disruptions in a mouse model of dystroglycanopathy. Matrix Biol 32:196-207
Dwyer, C A; Baker, E; Hu, H et al. (2012) RPTP?/phosphacan is abnormally glycosylated in a model of muscle-eye-brain disease lacking functional POMGnT1. Neuroscience 220:47-61
(2012) Retraction statement. Paper by Michael W. Miller and Huaiyu Hu [Developmental Neuroscience 2009;31:50-57]. Dev Neurosci 33:548
Zhang, Peng; Hu, Huaiyu (2012) Differential glycosylation of ýý-dystroglycan and proteins other than ýý-dystroglycan by like-glycosyltransferase. Glycobiology 22:235-47
Stalnaker, Stephanie H; Aoki, Kazuhiro; Lim, Jae-Min et al. (2011) Glycomic analyses of mouse models of congenital muscular dystrophy. J Biol Chem 286:21180-90
Zhang, Zhen; Zhang, Peng; Hu, Huaiyu (2011) LARGE expression augments the glycosylation of glycoproteins in addition to ýý-dystroglycan conferring laminin binding. PLoS One 6:e19080
Hu, Huaiyu; Li, Jing; Gagen, Christine S et al. (2011) Conditional knockout of protein O-mannosyltransferase 2 reveals tissue-specific roles of O-mannosyl glycosylation in brain development. J Comp Neurol 519:1320-37
Li, Jing; Yu, Miao; Feng, Gang et al. (2011) Breaches of the pial basement membrane are associated with defective dentate gyrus development in mouse models of congenital muscular dystrophies. Neurosci Lett 505:19-24

Showing the most recent 10 out of 14 publications