It has long been understood that an individual's characteristics play a role in the formation of their social network. For example, friendship networks are often characterized by ties among people with similar attributes. More recently the converse phenomenon has been studied, in which an individual's social network may affect their personal characteristics. For example: teenagers may change their alcohol or smoking behavior to more closely match those of their friends. More generally, an individual's network is likely to play a role in determining their status for a communicable disease. Such results indicate that, rather than think of individual-level attributes as fixed quantities which impact a network, the attributes might vary along with or as a result of the social network. However, there has been very little development of statistical methodology for the joint analysis of network and nodal attribute data. In typical data analyses, either the network or the nodal attribute data is chosen as the """"""""outcome variable."""""""" But analyses that treat the attribute data as the outcome variable generally fail to properly account for statistical dependencies due to social network effects, leading to inflated claims of statistical significance. Analyses in which the network is the outcome run into problems when there is incomplete or missing attribute data: common practice is to delete cases for which the data are incomplete. Such ad hoc data reductions discard valuable information and can result in biased parameter estimates and statistical inferences. The goal of this research project is to remedy these problems by developing statistical methods and software for the joint analysis of networks and nodal attribute data. The methods will be based on extensions of well-studied and familiar data analysis methods such as factor analysis, linear regression and probit models. This project will provide 7statistical methods for the joint analysis of social network and individual-level data;7analysis of Adolescent health datasets;7methods for the analysis of longitudinal network data;7open source data analysis tools for researchers.

Public Health Relevance

studies have shown evidence of interactions between people's characteristics and their social networks. For example, teenagers may preferentially form friendships with others having similar characteristics, or conversely, they may adjust their smoking or drinking behaviors to more closely match those of their friends. The proposed research project will develop statistical data analysis methods that allow for the quantification and detection of relationships between social networks and individual level characteristics, as well as provide for predictions of individual-level behavior from social network information.

Agency
National Institute of Health (NIH)
Institute
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Type
Research Project (R01)
Project #
5R01HD067509-04
Application #
8716788
Study Section
Biostatistical Methods and Research Design Study Section (BMRD)
Program Officer
Newcomer, Susan
Project Start
2011-09-01
Project End
2015-08-31
Budget Start
2014-09-01
Budget End
2015-08-31
Support Year
4
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of Washington
Department
Biostatistics & Other Math Sci
Type
Schools of Arts and Sciences
DUNS #
City
Seattle
State
WA
Country
United States
Zip Code
98195
Fosdick, Bailey K; Hoff, Peter D (2015) Testing and Modeling Dependencies Between a Network and Nodal Attributes. J Am Stat Assoc 110:1047-1056
Kessler, David C; Hoff, Peter D; Dunson, David B (2015) Marginally specified priors for non-parametric Bayesian estimation. J R Stat Soc Series B Stat Methodol 77:35-58
Volfovsky, Alexander; Hoff, Peter D (2015) Testing for nodal dependence in relational data matrices. J Am Stat Assoc 110:1037-1046
Hoff, Peter D (2015) MULTILINEAR TENSOR REGRESSION FOR LONGITUDINAL RELATIONAL DATA. Ann Appl Stat 9:1169-1193
Gerard, David; Hoff, Peter (2015) Equivariant minimax dominators of the MLE in the array normal model. J Multivar Anal 137:32-49
Volfovsky, Alexander; Hoff, Peter D (2014) HIERARCHICAL ARRAY PRIORS FOR ANOVA DECOMPOSITIONS OF CROSS-CLASSIFIED DATA. Ann Appl Stat 8:19-47
Fosdick, Bailey K; Hoff, Peter D (2014) SEPARABLE FACTOR ANALYSIS WITH APPLICATIONS TO MORTALITY DATA. Ann Appl Stat 8:120-147
Hoff, Peter D; Niu, Xiaoyue; Wellner, Jon A (2014) Information bounds for Gaussian copulas. Bernoulli (Andover) 20:604-622
Hoff, Peter; Fosdick, Bailey; Volfovsky, Alex et al. (2013) Likelihoods for fixed rank nomination networks. Netw Sci (Camb Univ Press) 1:253-277