Health and health behavior depend crucially on diffusion processes over social networks; both the spread of communicable diseases, such as HIV, and the diffusion of beliefs and practices that shape health behavior, such as dietary risk behavior, can be understood as generalized diffusion over (sometimes very complex and dynamic) social networks. However, despite the clear need, few of our formal analytic tools can be used to model diffusion over any but the simplest of these systems, as the mathematics for modeling diffusion over dynamic multi- relational networks are currently intractable except by direct simulation; which is often a weak foundation for generalizable knowledge; we provide a novel solution to modeling complex diffusion processes over dynamic networks by decomposing the networks into a set of tractable subsets and relation specific transmission rules. We will develop improved methods for network community detection that specifically targets understanding diffusion, and include such communities in our general framework; then test these new models against a bank of constructed and real social networks to assess model performance. Using simulation, novel new network clustering techniques and extensions of formal diffusion models, this project will develop the tools necessary to interpolate between the simplest direct diffusion cases and the most complex social behavior cases; advances will provide fundamental insights into health- relevant diffusion, yielding more robust modeling and highlighting directions for possible intervention.
A wide variety of health outcomes depend on network diffusion; this is clear in cases of direct disease transmission through intimate networks (HPV, HIV, etc.), but also underlies behavioral changes relevant for health, such as dietary practices or knowledge of substance-use risks. We propose a new class of simulation and formal modeling techniques that will allow researchers to understand which how network features affect diffusion in large dynamic networks. Such understanding is necessary to understand health disparities across demographic sub-groups and to build effective diffusion interventions that can protect public health.
Showing the most recent 10 out of 35 publications