We propose to define the reproductive functions of 14 novel testis-specific secreted or transmembrane proteins using newly developed and rapid CRISPR/Cas9 gene manipulation strategies. Over the last two decades, the Matzuk laboratory at Baylor College of Medicine and the Ikawa and Okabe laboratories at Osaka University, world leading experts in CRISPR/Cas9 technology, have succeeded in producing >200 mouse models to study reproductive processes in vivo. In this proposal, we will bring together our expertise in bioinformatics and manipulation of the mouse genome to characterize the in vivo functions and mechanisms of action of 14 novel testis-specific proteins. Using bioinformatics strategies, the Matzuk laboratory identified over 100 genes that are specifically expressed in mouse testis, that previously had not been functionally characterized in vitro or in vivo, and that have human orthologs. In parallel, the Ikawa and Okabe laboratories have developed the CRISPR/Cas9 system to rapidly and efficiently mutate genes in vivo, thereby avoiding the embryonic stem (ES) cell and chimera stages that have proved the most troublesome and labor-intensive for the traditional generation of knockout mice. Using our synergistic approaches, our laboratories are focusing on the functional characterization of 2 novel genes that encode secreted ligands and 12 novel genes that encode potential transmembrane proteins. These 14 proteins were chosen because of their potential relevance to infertility in men and their likelihood as druggable targets for male contraception; indeed, 70% of the FDA-approved drugs target either transmembrane or secreted proteins. Therefore, we have carefully selected our genes to not only have potential relevance to infertility in men but also as future potential targets for small molecules that specifically inhibit spermiogenesis, sperm morphogenesis, sperm motility, and/or fertilization. To date, we have evaluated the fertility status of mice with mutations in 12 of the 14 novel genes and discovered that null mutations in 6 genes lead to male sterility secondary to sperm morphogenesis, motility, or fertilization defects, 1 null mutation results in severe subfertility, 1 null mutation leads to an in vitro fertilization defect, and 4 null mutations did not alter fertility. Thus, mutations in the majority of our identified novel genes lead to defects in sperm formation or function, areas in which our groups have abundant skills in functional analysis and for which we have published over 100 papers. Working together, our groups will dedicate the first year of our proposal to defining the fertility phenotypes of the mutant mouse models and will devote the remaining four years to mechanistically characterizing only the proteins deemed to be essential for male reproduction and having relevance to contraception. These proof-of-principle studies have important translational implications for human reproductive genetics and contraceptive development.

Public Health Relevance

Our studies are directly relevant to the mission of NICHD and, in particular, the Fertility and Infertility Branch whose mission is ?to encourage, enable, and support scientific research aimed at alleviating human infertility, uncovering new possible pathways to control fertility, and expanding fundamental knowledge of processes that underlie human reproduction.? Despite the abundance of genes expressed in post-natal male germ cells (~4% of the mammalian genome), the functions of many of these genes and the pathways through which they act remain unknown. In this proposal, we plan to characterize the essential roles of 14 novel testis-expressed genes, focus on placing the fertility-essential proteins into molecular, biochemical, and genetic pathways, translate this data to enable the diagnosis of conditions in which these pathways are disrupted in men, and utilize this information in the future to develop novel male contraceptives, one of the three priority areas of the NICHD scientific vision.

Agency
National Institute of Health (NIH)
Institute
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Type
Research Project (R01)
Project #
5R01HD088412-03
Application #
9495709
Study Section
Cellular, Molecular and Integrative Reproduction Study Section (CMIR)
Program Officer
Moss, Stuart B
Project Start
2016-08-01
Project End
2021-05-31
Budget Start
2018-06-01
Budget End
2019-05-31
Support Year
3
Fiscal Year
2018
Total Cost
Indirect Cost
Name
Baylor College of Medicine
Department
Pathology
Type
Schools of Medicine
DUNS #
051113330
City
Houston
State
TX
Country
United States
Zip Code
77030
Fujihara, Yoshitaka; Miyata, Haruhiko; Ikawa, Masahito (2018) Factors controlling sperm migration through the oviduct revealed by gene-modified mouse models. Exp Anim 67:91-104
Nishimasu, Hiroshi; Shi, Xi; Ishiguro, Soh et al. (2018) Engineered CRISPR-Cas9 nuclease with expanded targeting space. Science 361:1259-1262
Abbasi, Ferheen; Miyata, Haruhiko; Shimada, Keisuke et al. (2018) RSPH6A is required for sperm flagellum formation and male fertility in mice. J Cell Sci 131:
Satouh, Yuhkoh; Ikawa, Masahito (2018) New Insights into the Molecular Events of Mammalian Fertilization. Trends Biochem Sci 43:818-828
Nozawa, Kaori; Satouh, Yuhkoh; Fujimoto, Takao et al. (2018) Sperm-borne phospholipase C zeta-1 ensures monospermic fertilization in mice. Sci Rep 8:1315
Fujihara, Yoshitaka; Oji, Asami; Kojima-Kita, Kanako et al. (2018) Co-expression of sperm membrane proteins CMTM2A and CMTM2B is essential for ADAM3 localization and male fertility in mice. J Cell Sci 131:
Fujihara, Yoshitaka; Oji, Asami; Larasati, Tamara et al. (2017) Human Globozoospermia-Related Gene Spata16 Is Required for Sperm Formation Revealed by CRISPR/Cas9-Mediated Mouse Models. Int J Mol Sci 18:
Castaneda, Julio M; Hua, Rong; Miyata, Haruhiko et al. (2017) TCTE1 is a conserved component of the dynein regulatory complex and is required for motility and metabolism in mouse spermatozoa. Proc Natl Acad Sci U S A 114:E5370-E5378
Iwamori, Tokuko; Iwamori, Naoki; Matsumoto, Masaki et al. (2017) Identification of KIAA1210 as a novel X-chromosome-linked protein that localizes to the acrosome and associates with the ectoplasmic specialization in testes. Biol Reprod 96:469-477
Monsivais, Diana; Clementi, Caterina; Peng, Jia et al. (2016) Uterine ALK3 is essential during the window of implantation. Proc Natl Acad Sci U S A 113:E387-95

Showing the most recent 10 out of 12 publications