There is strong demand for third-generation DNA sequencing systems to be single-molecule, massively- parallel, and real-time. For single-molecule optical techniques, however, the signal from a single fluorophore is typically <2500 photons/sec (equivalent to electrical current levels on the order of 50 fA). This leads to complex optics to try to collect every photon emitted and makes scaling of the platforms difficult. Additionally, synthesis reactions must be intentionally slowed to 1 Hz (or slower) to allow sufficient imaging times for these weak, noisy optical signals. The limitations of single-molecule optical techniques highlight key advantages of electrochemical detection approaches, which have significantly higher signal levels (typically three orders of magnitude higher), allowing for the possibility for high-bandwidth detection with the appropriate co-design of transducer, detector, and amplifier. Significant effort has been directed toward the development of nanopore technology as one potential bioelectronic transduction mechanism. Nanopores, however, have proved to be extremely limited by the relatively short time biomolecules spend in the charge-sensitive region of the pore. Restricted by the use of off- the-shelf electronics, the noise-limite bandwidth of nanopore measurements is typically less than 100 kHz, limiting the available sensing and actuation strategies and defying multiplexed integration which would be required for any sequencing application. In this four-year effort, we focus on improving significantly the noise-limited bandwidth of the detection electronics for nanopores allowing their full potential to be realized through close integration of the electronics and the pore while simultaneously supporting high levels of parallelism with multiple nanopores on the same detection substrate. We consider techniques for integrating both solid-state (Specific Aim 1) and biological pores (Specific Aim 3) onto these measurement substrates in a massively parallel manner (Specific Aim 2). The techniques we propose for leveraging commodity CMOS technology and co-integrating detection electronics are completely general and have significance to all other single-molecule bioelectronic transduction approaches. These high-bandwidth integrated electronics will also enable """"""""closed-loop"""""""" sensing and actuation (Specific Aim 4), allowing dynamic manipulation of capture and translocation dynamics at microsecond (or better) timescales.

Public Health Relevance

The integration of CMOS electronics with nanopores will address key obstacles that must be overcome to achieve nanopore-based low-cost high-speed sequencing of chromosomal length DNA molecules. Fast and low cost full genome DNA sequencing will allow, for example, major improvements in the understanding, diagnosis, treatment and prevention of disease, and significant advances in evolutionary research and the understanding of cellular operation.

Agency
National Institute of Health (NIH)
Institute
National Human Genome Research Institute (NHGRI)
Type
Research Project (R01)
Project #
1R01HG006879-01
Application #
8365334
Study Section
Special Emphasis Panel (ZHG1-HGR-N (M1))
Program Officer
Schloss, Jeffery
Project Start
2012-09-14
Project End
2015-07-31
Budget Start
2012-09-14
Budget End
2013-07-31
Support Year
1
Fiscal Year
2012
Total Cost
$500,000
Indirect Cost
$144,729
Name
Columbia University (N.Y.)
Department
Engineering (All Types)
Type
Schools of Engineering
DUNS #
049179401
City
New York
State
NY
Country
United States
Zip Code
10027
Hartel, Andreas J W; Ong, Peijie; Schroeder, Indra et al. (2018) Single-channel recordings of RyR1 at microsecond resolution in CMOS-suspended membranes. Proc Natl Acad Sci U S A 115:E1789-E1798
Danda, Gopinath; Masih Das, Paul; Chou, Yung-Chien et al. (2017) Monolayer WS2 Nanopores for DNA Translocation with Light-Adjustable Sizes. ACS Nano 11:1937-1945
Rauh, Oliver; Hansen, Ulf-Peter; Mach, Sebastian et al. (2017) Extended beta distributions open the access to fast gating in bilayer experiments-assigning the voltage-dependent gating to the selectivity filter. FEBS Lett 591:3850-3860
Shekar, Siddharth; Niedzwiecki, David J; Chien, Chen-Chi et al. (2016) Measurement of DNA Translocation Dynamics in a Solid-State Nanopore at 100 ns Temporal Resolution. Nano Lett 16:4483-9
Warren, Steven B; Vernick, Sefi; Romano, Ethan et al. (2016) Complementary Metal-Oxide-Semiconductor Integrated Carbon Nanotube Arrays: Toward Wide-Bandwidth Single-Molecule Sensing Systems. Nano Lett 16:2674-9
Rosenstein, Jacob K; Lemay, Serge G; Shepard, Kenneth L (2015) Single-molecule bioelectronics. Wiley Interdiscip Rev Nanomed Nanobiotechnol 7:475-93
Roseman, Jared M; Lin, Jianxun; Ramakrishnan, Siddharth et al. (2015) Hybrid integrated biological-solid-state system powered with adenosine triphosphate. Nat Commun 6:10070
Emmett, Kevin J; Rosenstein, Jacob K; van de Meent, Jan-Willem et al. (2015) Statistical inference for nanopore sequencing with a biased random walk model. Biophys J 108:1852-5
Balan, Adrian; Chien, Chen-Chi; Engelke, Rebecca et al. (2015) Suspended Solid-state Membranes on Glass Chips with Sub 1-pF Capacitance for Biomolecule Sensing Applications. Sci Rep 5:17775
Niedzwiecki, David J; Lanci, Christopher J; Shemer, Gabriel et al. (2015) Observing Changes in the Structure and Oligomerization State of a Helical Protein Dimer Using Solid-State Nanopores. ACS Nano 9:8907-15

Showing the most recent 10 out of 15 publications