Based upon the work of the principal investigator and others over the past 20 years, the understanding of the red cell membrane skeleton (spectrin cytoskeleton) is highly advanced and provides the model to which other membranes are compared. Defects in the red cell membrane skeleton are known to underlie many forms of hemolytic anemia including spherocytosis and elliptocytosis. Interestingly, the investigator demonstrates that all known clinically important mutations in spectrin lie in regions of sequence divergence due to presumed functional importance. Nevertheless, understanding of the membrane skeleton is certainly not complete. The applicant proposes to identify new proteins which interact with spectrin and characterize sites of the interaction. The roles of selected functional domains of spectrin will be evaluated in cultured mouse erythroleukemia cells (MEL). The phenotypes of mutations in functionally important domains of skeletal proteins will be evaluated in transgenic mice. The three dimensional structure of certain functional domains will be solved by collaborative studies with nuclear magnetic resonance spectroscopy. These studies should enhance the current level of basic understanding of the membrane skeleton of normal and defective red cells and should provide insight into the membranes of complex nucleated cells.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL028560-15
Application #
2415535
Study Section
Hematology Subcommittee 2 (HEM)
Project Start
1983-05-01
Project End
2001-04-30
Budget Start
1997-05-01
Budget End
1998-04-30
Support Year
15
Fiscal Year
1997
Total Cost
Indirect Cost
Name
Yale University
Department
Pathology
Type
Schools of Medicine
DUNS #
082359691
City
New Haven
State
CT
Country
United States
Zip Code
06520
Stankewich, Michael C; Moeckel, Gilbert W; Ji, Lan et al. (2016) Isoforms of Spectrin and Ankyrin Reflect the Functional Topography of the Mouse Kidney. PLoS One 11:e0142687
Kim, Jung H; Kwon, Soojung J; Stankewich, Michael C et al. (2016) Reactive protoplasmic and fibrous astrocytes contain high levels of calpain-cleaved alpha 2 spectrin. Exp Mol Pathol 100:1-7
Stankewich, Michael C; Cianci, Carol D; Stabach, Paul R et al. (2011) Cell organization, growth, and neural and cardiac development require ?II-spectrin. J Cell Sci 124:3956-66
La-Borde, Penelope J; Stabach, Paul R; Simonovic, Ivana et al. (2010) Ankyrin recognizes both surface character and shape of the 14-15 di-repeat of beta-spectrin. Biochem Biophys Res Commun 392:490-4
Cairo, Christopher W; Das, Raibatak; Albohy, Amgad et al. (2010) Dynamic regulation of CD45 lateral mobility by the spectrin-ankyrin cytoskeleton of T cells. J Biol Chem 285:11392-401
Stankewich, Michael C; Gwynn, Babette; Ardito, Thomas et al. (2010) Targeted deletion of betaIII spectrin impairs synaptogenesis and generates ataxic and seizure phenotypes. Proc Natl Acad Sci U S A 107:6022-7
Stabach, Paul R; Simonovi?, Ivana; Ranieri, Miranda A et al. (2009) The structure of the ankyrin-binding site of beta-spectrin reveals how tandem spectrin-repeats generate unique ligand-binding properties. Blood 113:5377-84
Stabach, Paul R; Devarajan, Prasad; Stankewich, Michael C et al. (2008) Ankyrin facilitates intracellular trafficking of alpha1-Na+-K+-ATPase in polarized cells. Am J Physiol Cell Physiol 295:C1202-14
Glantz, Susan B; Cianci, Carol D; Iyer, Rathna et al. (2007) Sequential degradation of alphaII and betaII spectrin by calpain in glutamate or maitotoxin-stimulated cells. Biochemistry 46:502-13
Simonovic, Miljan; Zhang, Zhushan; Cianci, Carol D et al. (2006) Structure of the calmodulin alphaII-spectrin complex provides insight into the regulation of cell plasticity. J Biol Chem 281:34333-40

Showing the most recent 10 out of 30 publications