Cardiac muscle is tethered within a fibrillar collagen matrix that serves to maximize force generation. Left ventricular pressure overload (LVPO) and hypertrophy (LVH) lead to excess collagen accumulation, or fibrosis (FIB). We observed FIB without cell necrosis (reactive FIB) during the evolutionary and early established phases of LVH while scar formation (reparative FIB) was present weeks later. These were structurally distinct patterns of fibrosis. In both forms of FIB, a structural and biochemical remodeling of collagen occurred with either beneficial or detrimental modifications of the systolic stress- stain relation of the intact myocardium, respectively. Accordingly, it continues to be our hypothesis that LVPO leads to reactive and reparative FIB which accounts for an alteration in the mechanical behavior of the hypertrophied myocardium.
Our first aim i s to determine the role of collagen concentration and content, and Its fibrillar types, distribution and structure in altering the systolic stress-strain relation In LVH. These issues will be addressed by a) raising the collagen/muscle mass ratio secondary to either increments or decrements in the respective volumes of collagen or muscle compartments; h) comparing subendocardial to patchy transmural FIB; and c) using the tight skin mouse with its excess type 1 collagen. Picrosirius red and polarization microscopy will be used to identify the different patterns of FIB and the structural nature and composition of fibrous tissue formation. Why collagen remodeling occurs with LVPO leads us to focus on myocardial fibroblasts- (Fb). In response to B adrenergic stimulation and in the absence of cell necrosis, we observed Fb proliferation in regions where wall stress is greatest.
Our second aim i s to determine whether wall stress-mediated myocardial norepinephrine (NE) release is the signal and Fb receptors the transducer of Fb proliferation and collagen synthesis in LVPO, We will monitor these events cAMP formation when a) total myocardial NE prior to LVPO is reduced pharmacologically or regionally by chemical denervation, and the influence of circulating NE is eliminated, b) wall stress is controlled in the denervated heterotopically transplanted heart, and c) pharmacologic probes of a and B receptors are used in adult cardiac fibroblast culture to assess their role in mediating these events in normal and hypertrophied hearts.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Project (R01)
Project #
Application #
Study Section
Cardiovascular and Pulmonary Research A Study Section (CVA)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Michael Reese Hospital
United States
Zip Code
Katwa, L C; Sun, Y; Campbell, S E et al. (1998) Pouch tissue and angiotensin peptide generation. J Mol Cell Cardiol 30:1401-13
De Carvalho Frimm, C; Sun, Y; Weber, K T (1997) Angiotensin II receptor blockade and myocardial fibrosis of the infarcted rat heart. J Lab Clin Med 129:439-46
Katwa, L C; Campbell, S E; Tyagi, S C et al. (1997) Cultured myofibroblasts generate angiotensin peptides de novo. J Mol Cell Cardiol 29:1375-86
Sun, Y; Ramires, F J; Weber, K T (1997) Fibrosis of atria and great vessels in response to angiotensin II or aldosterone infusion. Cardiovasc Res 35:138-47
Katwa, L C; Tyagi, S C; Campbell, S E et al. (1996) Valvular interstitial cells express angiotensinogen and cathepsin D, and generate angiotensin peptides. Int J Biochem Cell Biol 28:807-21
Sigusch, H H; Campbell, S E; Weber, K T (1996) Angiotensin II-induced myocardial fibrosis in rats: role of nitric oxide, prostaglandins and bradykinin. Cardiovasc Res 31:546-54
Kovacs, A; Kandala, J C; Weber, K T et al. (1996) Triple helix-forming oligonucleotide corresponding to the polypyrimidine sequence in the rat alpha 1(I) collagen promoter specifically inhibits factor binding and transcription. J Biol Chem 271:1805-12
Ou, R; Sun, Y; Ganjam, V K et al. (1996) In situ production of angiotensin II by fibrosed rat pericardium. J Mol Cell Cardiol 28:1319-27
Sun, Y; Weber, K T (1996) Angiotensin-converting enzyme and wound healing in diverse tissues of the rat. J Lab Clin Med 127:94-101
Frimm, C de C; Sun, Y; Weber, K T (1996) Wound healing following myocardial infarction in the rat: role for bradykinin and prostaglandins. J Mol Cell Cardiol 28:1279-85

Showing the most recent 10 out of 91 publications