The overall objective of this work is to produce a molecular map of the structural basis for platelet interaction (specifically GBIIb-IIIa) with adhesive proteins. The hypothesis states that multiple ligand contact points govern high affinity binding between IIb-IIIa and its various adhesive protein ligands, and the overall goal of the current work is to identify individual amino acids in each receptor subunit that are essential for ligand binding. The first Specific Aim is to generate an """"""""entire"""""""" library of potential mutations that may play a role in ligand binding through the use of a random mutagenesis approach. A screening methodology will be employed to enrich for mutants that result in a loss of ligand binding.
The second Aim i s based on the hypothesis that ligand recognition specificity is regulated by distinct regions of IIb. The regions will be identified by the development and assessment of chimeric alpha subunits that include different combination of alpha subunit from IIb-IIIa and the vitronectin receptor. Major concerns from last review were about interpreting data from loss-of-function mutation, and the need to establish feasibility of methods that had been proposed.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL042977-08
Application #
2503607
Study Section
Hematology Subcommittee 2 (HEM)
Project Start
1990-04-01
Project End
2000-06-30
Budget Start
1998-07-01
Budget End
1999-06-30
Support Year
8
Fiscal Year
1998
Total Cost
Indirect Cost
Name
Mayo Clinic, Rochester
Department
Type
DUNS #
City
Rochester
State
MN
Country
United States
Zip Code
55905