Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
2R01HL047179-06A1
Application #
2223476
Study Section
Special Emphasis Panel (ZRG7-SAT (M1))
Project Start
1991-08-01
Project End
1999-04-30
Budget Start
1996-05-01
Budget End
1997-04-30
Support Year
6
Fiscal Year
1996
Total Cost
Indirect Cost
Name
University of Delaware
Department
Engineering (All Types)
Type
Schools of Engineering
DUNS #
059007500
City
Newark
State
DE
Country
United States
Zip Code
19716
Silver, J H; Lin, J C; Lim, F et al. (1999) Surface properties and hemocompatibility of alkyl-siloxane monolayers supported on silicone rubber: effect of alkyl chain length and ionic functionality. Biomaterials 20:1533-43
Yung, L Y; Colman, R W; Cooper, S L (1999) Neutrophil adhesion on polyurethanes preadsorbed with high molecular weight kininogen. Blood 94:2716-24
Khan, M M; Kunapuli, S P; Lin, Y et al. (1998) Three noncontiguous peptides comprise binding sites on high-molecular-weight kininogen to neutrophils. Am J Physiol 275:H145-50
Yung, L Y; Cooper, S L (1998) Neutrophil adhesion on phosphorylcholine-containing polyurethanes. Biomaterials 19:31-40
Yung, L Y; Lim, F; Khan, M M et al. (1996) Neutrophil adhesion on surfaces preadsorbed with high molecular weight kininogen under well-defined flow conditions. Immunopharmacology 32:19-23
Lim, F; Cooper, S L (1995) Effect of sulphonate incorporation on in vitro leucocyte adhesion to polyurethanes. Biomaterials 16:457-66
Silver, J H; Hergenrother, R W; Lin, J C et al. (1995) Surface and blood-contacting properties of alkylsiloxane monolayers supported on silicone rubber. J Biomed Mater Res 29:535-48
Silver, J H; Myers, C W; Lim, F et al. (1994) Effect of polyol molecular weight on the physical properties and haemocompatibility of polyurethanes containing polyethylene oxide macroglycols. Biomaterials 15:695-704
Lin, H B; Sun, W; Mosher, D F et al. (1994) Synthesis, surface, and cell-adhesion properties of polyurethanes containing covalently grafted RGD-peptides. J Biomed Mater Res 28:329-42
Lin, H B; Lewis, K B; Leach-Scampavia, D et al. (1993) Surface properties of RGD-peptide grafted polyurethane block copolymers: variable take-off angle and cold-stage ESCA studies. J Biomater Sci Polym Ed 4:183-98

Showing the most recent 10 out of 15 publications