The long-term goal of this research program is to use gene-targeting and gene-transfer technologies in mice to directly test the following general hypothesis: hemostatic factors are critical in the progression and pathobiology a wide spectrum of diseases, including atherosclerosis, cancer, fibrotic lung disease, sickle cell disease, and other diseases associated with acute or chronic tissue injury. The specific objective of this research plan is to directly test the hypothesis that two key hemostatic factors, fibrinogen (Fib) and plasminogen (Plg), are important in the progression of vessel wall disease. A substantial amount of indirect evidence has pointed to a critical role of hemostatic factors in the early progression of atherosclerotic disease that generally precedes and predisposes to myocardial infarction and stroke, including the presence of copious amounts of fibrin(ogen) and fibrin degradation products within early lesions, high local expression of procoagulants and fibrinolytic system components, epidemiological identification of specific hemostatic factors as risk factors for coronary artery disease, and the incorporation of mural thrombi into advanced plaques. The recent generation of gene-targeted mouse lines predisposed to atherosclerosis as a consequence of selected deficiencies in apolipoproteins or their receptors, coupled with the availability of mice with selected deficits in key hemostatic factors, has provided an opportunity to directly test the importance of specific coagulation and fibrinolytic factors in atherosclerosis in vivo.
In Specific Aim 1 of this proposal, the progression of atherosclerotic disease will be quantitatively and qualitatively compared in LDLR-deficient and control C57B1/6 mice that either retain or lack Fib and Plg. Age, diet, and gender will be examined as independent variables in these studies. The mechanistic role of fibrin(ogen) in the acceleration of atherosclerosis observed in Plg-deficient mice will be determined in Specific Aim 2 by detailed analysis of atherosclerotic disease in mice with single and combined deficiencies in those hemostatic factors.
In Specific Aim 3, the impact of Fib and Plg deficiencies on neointima formation following chronic inflammatory challenge will be evaluated. The proposed studies will provide a more detailed understanding of the role of specific coagulation/fibrinolytic factors in vascular disease and could ultimately lead to new and valuable therapeutic strategies for the prevention and treatment of vascular disorders causing life-threatening arterial occlusion.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
2R01HL047826-05
Application #
2702207
Study Section
Hematology Subcommittee 2 (HEM)
Project Start
1994-08-01
Project End
2002-07-31
Budget Start
1998-08-01
Budget End
1999-07-31
Support Year
5
Fiscal Year
1998
Total Cost
Indirect Cost
Name
Cincinnati Children's Hospital Medical Center
Department
Type
DUNS #
071284913
City
Cincinnati
State
OH
Country
United States
Zip Code
45229
Palumbo, J S; Zogg, M; Talmage, K E et al. (2004) Role of fibrinogen- and platelet-mediated hemostasis in mouse embryogenesis and reproduction. J Thromb Haemost 2:1368-79
Currier, Angela R; Sabla, Gregg; Locaputo, Stephanie et al. (2003) Plasminogen directs the pleiotropic effects of uPA in liver injury and repair. Am J Physiol Gastrointest Liver Physiol 284:G508-15
Kufrin, Dubravka; Eslin, Don E; Bdeir, Khalil et al. (2003) Antithrombotic thrombocytes: ectopic expression of urokinase-type plasminogen activator in platelets. Blood 102:926-33
Bannach, Felizabel Garcia; Gutierrez, Ana; Fowler, Bruce J et al. (2002) Localization of regulatory elements mediating constitutive and cytokine-stimulated plasminogen gene expression. J Biol Chem 277:38579-88
Palumbo, Joseph S; Potter, Jill M; Kaplan, Lisa S et al. (2002) Spontaneous hematogenous and lymphatic metastasis, but not primary tumor growth or angiogenesis, is diminished in fibrinogen-deficient mice. Cancer Res 62:6966-72
Bezerra, J A; Currier, A R; Melin-Aldana, H et al. (2001) Plasminogen activators direct reorganization of the liver lobule after acute injury. Am J Pathol 158:921-9
Ng, V L; Sabla, G E; Melin-Aldana, H et al. (2001) Plasminogen deficiency results in poor clearance of non-fibrin matrix and persistent activation of hepatic stellate cells after an acute injury. J Hepatol 35:781-9
Pohl, J F; Melin-Aldana, H; Sabla, G et al. (2001) Plasminogen deficiency leads to impaired lobular reorganization and matrix accumulation after chronic liver injury. Am J Pathol 159:2179-86
Drew, A F; Tucker, H L; Liu, H et al. (2001) Crescentic glomerulonephritis is diminished in fibrinogen-deficient mice. Am J Physiol Renal Physiol 281:F1157-63
Degen, J L (2001) Genetic interactions between the coagulation and fibrinolytic systems. Thromb Haemost 86:130-7

Showing the most recent 10 out of 32 publications