Firmani, Marcia A; Riley, Lee W (2002) Mycobacterium tuberculosis CDC1551 is resistant to reactive nitrogen and oxygen intermediates in vitro. Infect Immun 70:3965-8
|
Firmani, Marcia A; Riley, Lee W (2002) Reactive nitrogen intermediates have a bacteriostatic effect on Mycobacterium tuberculosis in vitro. J Clin Microbiol 40:3162-6
|
Stewart, G R; Ehrt, S; Riley, L W et al. (2000) Deletion of the putative antioxidant noxR1 does not alter the virulence of Mycobacterium tuberculosis H37Rv. Tuber Lung Dis 80:237-42
|
Murray, H W; Nathan, C F (1999) Macrophage microbicidal mechanisms in vivo: reactive nitrogen versus oxygen intermediates in the killing of intracellular visceral Leishmania donovani. J Exp Med 189:741-6
|
Ruan, J; St John, G; Ehrt, S et al. (1999) noxR3, a novel gene from Mycobacterium tuberculosis, protects Salmonella typhimurium from nitrosative and oxidative stress. Infect Immun 67:3276-83
|
Shiloh, M U; MacMicking, J D; Nicholson, S et al. (1999) Phenotype of mice and macrophages deficient in both phagocyte oxidase and inducible nitric oxide synthase. Immunity 10:29-38
|
Chen, L; Xie, Q W; Nathan, C (1998) Alkyl hydroperoxide reductase subunit C (AhpC) protects bacterial and human cells against reactive nitrogen intermediates. Mol Cell 1:795-805
|
Karupiah, G; Chen, J H; Mahalingam, S et al. (1998) Rapid interferon gamma-dependent clearance of influenza A virus and protection from consolidating pneumonitis in nitric oxide synthase 2-deficient mice. J Exp Med 188:1541-6
|
Karupiah, G; Chen, J H; Nathan, C F et al. (1998) Identification of nitric oxide synthase 2 as an innate resistance locus against ectromelia virus infection. J Virol 72:7703-6
|
Friedman, C R; Quinn, G C; Kreiswirth, B N et al. (1997) Widespread dissemination of a drug-susceptible strain of Mycobacterium tuberculosis. J Infect Dis 176:478-84
|
Showing the most recent 10 out of 17 publications