Platelets and platelet products, like platelet-derived growth factor (PDGF), are critical to the maintenance of hemostasis and are continually implicated in atherogenesis. However, little is understood about the genetic determination of normal quantitative variation in platelet biology. The overall objective of the proposed study is to detect the effects of genes on normal biological variation in platelet-stores of PDGF and other traits which influence its availability and activity in a nonhuman primate model for atherosclerosis. Statistical genetic methods will be used to detect and measure the effects of variation at unknown major loci, known candidate loci, anonymous microsatellite loci, and polygenes on quantitative variation in platelet stored PDGF and other PDGF-related traits. These traits, including platelet number and volume, serum platelet activating factor (PAF), plasma thromboxane B2, serum insulin- like growth factor-1 (IGF-1), and total and high density lipoprotein cholesterol, will be measured in 600 pedigreed baboons. Each animal's genotype at 6 polymorphic candidate loci -- including PDGF-B chain and IGF- loci, and the loci for the PDGF-B, IGF-1, thromboxane A2, and PAF receptors -- will be determined by polymerase chain reaction methods. Maximum-likelihood quantitative genetic and complex segregation analyses will be used to estimate heritabilities, the effects of major genes, and the joint effects of polygenes, major loci, and candidate gene polymorphisms on these traits. Extensions of complex segregation analysis will be used to detect differential expression of genotypes as functions of covariates, e.g., sex and age. Both formal penetrance-parameter-based LOD score analysis and robust variance components analysis will be used to detect quantitative trait linkage with candidate loci and the anonymous microsatellite markers from a baboon genome map currently being developed for the same animals. The proposed project will increase our knowledge about the genetic determinants of normal quantitative variation in PDGF and related phenotypes, provide information on the extent and nature of covariation among these phenotypes, help localize genomic regions responsible for variation in these traits, and further establish the pedigreed baboon as a model for atherosclerosis-related genetic research.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL054141-05
Application #
6184138
Study Section
Mammalian Genetics Study Section (MGN)
Project Start
1996-08-01
Project End
2002-06-30
Budget Start
2000-07-01
Budget End
2002-06-30
Support Year
5
Fiscal Year
2000
Total Cost
$200,856
Indirect Cost
Name
Texas Biomedical Research Institute
Department
Type
DUNS #
007936834
City
San Antonio
State
TX
Country
United States
Zip Code
78245
Bertin, Angeline; Mahaney, Michael C; Cox, Laura A et al. (2007) Quantitative trait loci for peripheral blood cell counts: a study in baboons. Mamm Genome 18:361-72
Havill, L M; Hale, L G; Newman, D E et al. (2006) Bone ALP and OC reference standards in adult baboons (Papio hamadryas) by sex and age. J Med Primatol 35:97-105
Mahaney, Michael C; Brugnara, Carlo; Lease, Loren R et al. (2005) Genetic influences on peripheral blood cell counts: a study in baboons. Blood 106:1210-4
Havill, L M; Cox, L A; Rogers, J et al. (2005) Cross-species replication of a serum osteocalcin quantitative trait locus on human chromosome 16q in pedigreed baboons. Calcif Tissue Int 77:205-11
Havill, L M; Mahaney, M C; Cox, L A et al. (2005) A quantitative trait locus for normal variation in forearm bone mineral density in pedigreed baboons maps to the ortholog of human chromosome 11q. J Clin Endocrinol Metab 90:3638-45
Havill, L M; Mahaney, M C; Rogers, J (2004) Genotype-by-sex and environment-by-sex interactions influence variation in serum levels of bone-specific alkaline phosphatase in adult baboons (Papio hamadryas). Bone 35:198-203
Havill, L M; Snider, C L; Leland, M M et al. (2003) Hematology and blood biochemistry in infant baboons (Papio hamadryas). J Med Primatol 32:131-8
Martin, Lisa J; Mahaney, Michael C; Bronikowski, Anne M et al. (2002) Lifespan in captive baboons is heritable. Mech Ageing Dev 123:1461-7
Mahaney, M C; Czerwinski, S A; Adachi, T et al. (2000) Plasma levels of extracellular superoxide dismutase in an Australian population: genetic contribution to normal variation and correlations with plasma nitric oxide and apolipoprotein A-I levels. Arterioscler Thromb Vasc Biol 20:683-8