The overall objective of this proposal is to elucidate the mechanism of the newly discovered phenomenon of """"""""late preconditioning."""""""" We will attempt to develop a unifying pathophysiologic paradigm applicable both to late preconditioning against myocardial stunning and to late preconditioning against myocardial infarction. Our fundamental hypothesis is that, in both cases, late preconditioning is triggered by the exposure to oxygen-derived free radicals during the preconditioning ischemia (""""""""oxyradical hypothesis of late preconditioning""""""""). We further propose that the protection afforded by late preconditioning is mediated by the synthesis of cardioprotective proteins, such as antioxidant enzymes and/or stress proteins. All studies will be conducted in conscious animals, i.e., in preparations that are as physiological as possible; specifically, we will employ a conscious pig model in which we have demonstrated that brief ischemia induces late preconditioning against stunning as well as infarction. The role of oxygen-derived free radicals will be directly investigated by in vivo detection and quantification with spin trapping. A broad multidisciplinary approach will be used that will combine diverse techniques (free radical chemistry and biochemistry, integrative physiology, spin trapping, mass spectrometry, measurement of infarct size and regional contractile function) and will integrate chemical information at the molecular level with physiological information at the conscious animal level. The first step will be to thoroughly define the time-course of late preconditioning against stunning and infarction. To elucidate whether late preconditioning results in decreased production of free radicals, free radical generation in the preconditioned myocardium will be directly measured and correlated with the protection observed. The oxyradical hypothesis of late preconditioning will be tested by determining whether free radical scavengers prevent late preconditioning and, conversely, whether a free radical-generating system induces late preconditioning. The molecular structure of the free radicals generated during the preconditioning ischemia will be identified by 14C-labeling, HPLC, EPR spectroscopy, and mass spectrometry. A comprehensive, in-depth analysis of the free-radical reactions associated with the preconditioning ischemia will be performed using a new generation of spin traps with unique diagnostic potential [(MO3)PBN, 4-POBN, alpha-13C PBN, 2,6-diffluoro PBN, deuterated PBN]. The role of antioxidant enzymes and stress proteins as mediators of late preconditioning will be initially explored by determining whether the changes in the myocardial levels of Mn-SOD, Cu,Zn-SOD, catalase, glutathione peroxidase, glutathione reductase and HSP70, 90, 60, 27, and 100 correlate with the changes in the severity of myocardial stunning and in infarct size. Then, to establish whether there is a cause-and-effect relationship between increases in these proteins and late preconditioning, antioxidant enzymes will be selectively inhibited and the effect of this inhibition on preconditioning against stunning and infarction will be assessed; similarly, the synthesis of stress proteins will be blocked and the effect of this intervention on preconditioning and of ischemia/reperfusion injury in general. Elucidation of the mechanism of late preconditioning should facilitate the development of drugs that duplicate its powerful protective effects.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL055757-04
Application #
2702312
Study Section
Cardiovascular and Pulmonary Research A Study Section (CVA)
Project Start
1995-05-01
Project End
2000-04-30
Budget Start
1998-05-01
Budget End
1999-04-30
Support Year
4
Fiscal Year
1998
Total Cost
Indirect Cost
Name
University of Louisville
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
City
Louisville
State
KY
Country
United States
Zip Code
40292
Tang, Xian-Liang; Li, Qianhong; Rokosh, Gregg et al. (2016) Long-Term Outcome of Administration of c-kit(POS) Cardiac Progenitor Cells After Acute Myocardial Infarction: Transplanted Cells Do not Become Cardiomyocytes, but Structural and Functional Improvement and Proliferation of Endogenous Cells Persist for at L Circ Res 118:1091-105
Tokita, Yukichi; Tang, Xian-Liang; Li, Qianhong et al. (2016) Repeated Administrations of Cardiac Progenitor Cells Are Markedly More Effective Than a Single Administration: A New Paradigm in Cell Therapy. Circ Res 119:635-51
Tang, Xian-Liang; Rokosh, Gregg; Sanganalmath, Santosh K et al. (2015) Effects of Intracoronary Infusion of Escalating Doses of Cardiac Stem Cells in Rats With Acute Myocardial Infarction. Circ Heart Fail 8:757-65
Hong, Kyung U; Guo, Yiru; Li, Qian-Hong et al. (2014) c-kit+ Cardiac stem cells alleviate post-myocardial infarction left ventricular dysfunction despite poor engraftment and negligible retention in the recipient heart. PLoS One 9:e96725
Bolli, Roberto; Tang, Xian-Liang; Sanganalmath, Santosh K et al. (2013) Intracoronary delivery of autologous cardiac stem cells improves cardiac function in a porcine model of chronic ischemic cardiomyopathy. Circulation 128:122-31
Madonna, Rosalinda; Bolli, Roberto; Rokosh, Gregg et al. (2013) Targeting phosphatidylinositol 3-kinase-Akt through hepatocyte growth factor for cardioprotection. J Cardiovasc Med (Hagerstown) 14:249-53
Madonna, Rosalinda; Bolli, Roberto; Rokosh, Gregg et al. (2013) Long-term engraftment and angiogenic properties of lentivirally transduced adipose tissue-derived stromal cells. Mol Biotechnol 54:13-24
Sanganalmath, Santosh K; Bolli, Roberto (2013) Cell therapy for heart failure: a comprehensive overview of experimental and clinical studies, current challenges, and future directions. Circ Res 113:810-34
Hong, Kyung U; Li, Qian-Hong; Guo, Yiru et al. (2013) A highly sensitive and accurate method to quantify absolute numbers of c-kit+ cardiac stem cells following transplantation in mice. Basic Res Cardiol 108:346
Stein, Adam B; Bolli, Roberto; Dawn, Buddhadeb et al. (2012) Carbon monoxide induces a late preconditioning-mimetic cardioprotective and antiapoptotic milieu in the myocardium. J Mol Cell Cardiol 52:228-36

Showing the most recent 10 out of 162 publications